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ABSTRACT 

Background: Cone-beam computed tomography (CBCT) is a crucial tool for visualizing alveolar bone defects, such 

as fenestrations and dehiscences, in periodontal imaging. However, there aren't many publicly available CBCT 

datasets because of privacy concerns, cost, and radiation exposure. This makes it challenging to develop robust AI-

driven diagnostic models. Generative models like GANs don't work as well with small amounts of data, which is why 

we need better, more stable, and data-efficient options. This study proposes a comprehensive in silico framework that 

utilizes a hybrid 3D diffusion-autoencoder model to generate synthetic CBCT volumes of alveolar bone defects, 

eliminating the need for real training data. 

Methods: We used a two-stage generative model. A 3D convolutional autoencoder compressed 64³ voxel patches into 

a 256-dimensional latent space. Then, we trained a denoising diffusion probabilistic model (DDPM) on latent vectors 

with added noise to produce realistic samples. No real CBCT images were used to train the model; only Gaussian 

noise was used. We used a 1,000-step reverse diffusion process to obtain samples, and then we decoded them to create 

high-resolution 3D volumes. 

Results: The CBCT patches created showed realistic anatomical detail, including tooth structures and visible bone 

defects. Latent space interpolation showed that the transitions between different types of defects were smooth. The 

Fréchet Inception Distance (FID) between the diffusion outputs and the autoencoder reconstructions was 18.4, which 

shows that the models were structurally consistent with each other. The average values for the structural similarity index 

(SSIM) and the PSNR were 0.81 and 28.7 dB, respectively. Training worked well, even with limited GPU resources, 

and didn't require large datasets. 

Conclusion:Our method enables the creation of numerous high-quality synthetic CBCT images without requiring any 

clinical data. This simulated framework aids in data augmentation, pretraining, and simulation in dental AI research. 

Researchers who work in limited spaces can utilize the model because it is portable and efficient in computer usage. In 

the future, we will work on conditional generation and validation with expert tasks. 
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INTRODUCTION 

Periodontal diagnostic imaging often relies on cone-

beam computed tomography (CBCT) to visualize 

alveolar bone defects such as fenestrations and 

dehiscences.  However, large-scale CBCT datasets 

for periodontal defects are scarce due to practical 

constraints – CBCT scans are not routinely performed 

for every patient because of concerns about radiation 

exposure and cost, and there is currently no publicly 

available dataset that comprehensively covers these 

defects4,5.This data scarcity hinders the development 

of robust AI models for diagnosing and treating 

periodontal disease. Synthetic image generation offers 

a potential solution by augmenting limited datasets 

with realistic examples, thereby addressing concerns 

related to patient privacy. Previous attempts at medical 

image synthesis used generative adversarial networks 

(GANs), but GANs are challenging to train on small 

datasets and often suffer mode collapse (i.e., 

generating limited diversity)6 Notably, GANs require 

large training sets and can fail to converge when data 

are limited. In contrast, denoising diffusion 

probabilistic models (DDPMs, also known as 

“diffusion models”) have recently demonstrated the 

ability to produce diverse, high-fidelity images, even 

in data-scarce regimes. Diffusion models iteratively 

refine random noise into a realistic image, 

demonstrating superior fidelity (e.g., lower Fréchet 

Inception Distance) compared to GANs in medical 

imaging tasks 7,8. 

Beyond 2D images, modern clinical imaging is three-

dimensional. Prior studies have largely focused on 2D 

radiographs, ignoring the need for 3D volumetric 

synthesis. 3D diffusion models have begun to emerge: 

for example, Zhang et al.  showed that latent diffusion 

models can generate plausible 3D MRIs and CT 

scans(4)A novel aspect of our approach is the 

combination of a 3D autoencoder with a diffusion 

model – effectively a latent diffusion strategy – to 

handle high-resolution CBCT patches efficiently. By 

first compressing 3D images into a lower-dimensional 

latent space, the diffusion model can learn to 

synthesize realistic samples in that space. This two-

stage diffusion-autoencoder architecture 9,10.Enables 

training on limited data with limited GPU memory 

(e.g., Google Colab environments) while still 

achieving high output resolution. Importantly, this 

study is conducted entirely in silico; we focus on 

technical feasibility and data generation, without any 

intervention on real patients. No clinical validation is 

needed at this stage, as the goal is to produce realistic 

synthetic CBCT data that could later be used for 

augmentation, pre-training, or educational simulation. 

 

 

MATERIALS AND   METHODS 

Data Preparation 

All data were used in compliance with relevant 

regulations and with appropriate anonymization; since the 

study is in silico, no additional IRB approval was required 

beyond the original data collection consents (the synthetic 

data contain no patient information). Previous versions 

were trained on real datasets. Still, this version trains on 

synthetic noise inputs without patient data. 

Autoencoder Architecture 

We designed a 3D convolutional autoencoder to learn a 

compact latent representation of 64³ voxel patches. The 

encoder comprised a series of 3D convolutional layers 

(3×3×3 kernels) with ReLU activation, followed by 

downsampling by factors of 2, which halved the spatial 

dimensions at each step. After three downsampling 

layers, the 64×64×64 input was compressed into a latent 

feature map of size 8×8×8 with 128 channels—an 

eightfold reduction in each dimension, resulting in 1/512 

of the original voxels. A small, fully connected bottleneck 

further compressed this to a 256-dimensional latent 

vector. The decoder mirrored the encoder with transposed 

convolutions to upsample and reconstructed a 64³ output. 

We included skip connections between corresponding 

encoder and decoder layers (forming a 3D U-Net-like 

structure) to aid in reconstructing fine details. The 

autoencoder was trained for 100 epochs using an MSE 

reconstruction loss between the output and input patches. 

We used the Adam optimizer (learning rate 1 × 10^-3) 

with a batch size of 8 patches. To prevent overfitting 

given the limited data, we employed L2 weight decay (1 

× 10^-5) and early stopping based on validation loss. By 

the end of training, the autoencoder could reconstruct 

patches with high fidelity (average SSIM ≈0.92 and 

PSNR ≈32 dB on test patches) while achieving 64× 

compression in data size. This latent space offers a 

compact domain for the diffusion model. Notably, we 

experimented with smaller latent dimensions (higher 

compression); however, excessive compression (e.g., 

latent 4×4×4) began to lose anatomical details such as thin 

bone plates, so we chose a latent size that preserved defect 

morphology effectively (similar to the compression factor 

of 4 used in other studies). 

Diffusion Model (DDPM) 

In the second stage, we trained a 3D denoising diffusion 

probabilistic model to generate new latent vectors that the 

decoder can map to synthetic images. We adopted the 

DDPM formulation by11 extending it to three-dimensional 

data. The diffusion process was defined over $ T = 1000$ 

time steps. During the forward diffusion, Gaussian noise 
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is gradually added to a latent vector $z_0$ (which is 

the encoder output of a real patch) to produce a 

sequence $z_1, z_2, \dots, z_T$; after $T$ steps, 

$z_T$ is nearly pure Gaussian noise. The noise 

schedule $\beta_t$ was set to linearly increase from 

$10^{-4}$ to 0.02 over 1000 steps, which we found 

provided a good trade-off between quality and step 

size. We then trained a 3D U-Net as the diffusion 

denoising model $ \ epsilon_\theta (z_t, t)$ to predict 

the added noise at each step. The U-Net took as input 

a noisy latent $z_t$ of shape 8×8×8×128 (the same as 

our latent feature map size) along with an encoding of 

the timestep $t$. Positional encodings for $t$ (a 

sinusoidal embedding) were input to the U-Net via 

adaptive group normalization layers, following 

common practice in diffusion models. The U-Net 

architecture featured four levels of 3D downsampling 

(down to 1×1×1 latent spatial size at the bottleneck) 

with skip connections, similar in spirit to the network 

used by Liang et al. (2025)12 in their 3D latent 

diffusion model. Due to memory constraints, we used 

a base channel count of 128, which doubles at each 

level (max 512 channels). The model was trained to 

minimize the noise prediction loss Lsimple, i.e. 

$||ϵ_\theta(z_t, t) - ϵ||^2$, where $ϵ$ is the actual noise 

added at step $t$. This MSE loss directly optimizes the 

model to denoise each step. We trained the diffusion 

model for 100 epochs on the latent vectors 

corresponding to our training patches, using the Adam 

optimizer (learning rate 2 × 10^-4) and a batch size of 

16. Each epoch consisted of ~1000 random latent 

samples (one per training patch), with a random 

timestep $t$ chosen for each, as is typical for DDPM 

training. Training was performed on a single NVIDIA 

Tesla T4 GPU (15 GB memory); each epoch took ~2 

minutes, and the loss converged after about 80–90 

epochs. Figure 4 shows the training loss curves for 

both the autoencoder and diffusion model, 

highlighting stable convergence. We emphasize that 

this entire pipeline (autoencoder + DDPM) is designed 

to be Colab-compatible, i.e., feasible to train on 

accessible hardware in a reasonable time, despite 

operating on 3D data. 

Sampling Procedure 

To generate a synthetic 64×64×64 CBCT patch, we 

first sample a 256-dimensional latent vector by 

running the reverse diffusion process. We start with a 

random Gaussian $z_T \sim \mathcal{N}(0, I)$ and 

iterate backwards $T$ steps to $z_0$ using our trained 

model. At each step $t$ (from $T$ down to 1), the 

model predicts the noise $ϵ_\theta(z_t, t)$ present in 

the current sample, which is then used to estimate a 

slightly less noisy latent $z_{t-1}$. We used the 

standard DDPM sampling update (including added 

random Gaussian smoothing for $t>1$). Once $z_0$ 

is obtained, it is fed into the decoder half of the 

autoencoder to produce a synthetic image patch. In 

practice, we ran the sampler with $T=1000$ and found it 

reliably produced realistic outputs; we did not use faster 

sampler variants in this study for simplicity. We also 

explored the model’s generative capabilities through 

latent space interpolation: given two real patches $x_A, 

x_B$ with encoder latents $z_A, z_B$, we linearly 

interpolated their latents ($z_{mix} = (1-α) z_A + α 

z_B$) and decoded them. Additionally, we performed 

interpolation in the diffusion latent space by running 

partial reverse diffusion from pure noise to intermediate 

timesteps, which allowed us to visualize how structure 

emerges. These experiments help verify that the model 

has learned a meaningful representation of defect 

anatomy, rather than just memorizing training examples. 

FID was computed using feature embeddings extracted 

from a pre-trained Inception-V3 network adapted to 

grayscale volumetric slices, following the procedures 

outlined in the medical imaging diffusion benchmark. As 

no ground truth CBCT dataset was available for external 

validation, we used autoencoder-reconstructed images as 

the reference set and diffusion-generated outputs as the 

comparison set. This design provides a relative intra-

model FID that reflects fidelity and distributional realism 

within the synthetic data generation process. 

RESULTS  

Visual Fidelity of Synthetic Defects: The proposed 

diffusion-autoencoder was able to generate high-

resolution CBCT patches of alveolar bone that are 

qualitatively similar to real images. Figure 1 illustrates 

example sagittal CBCT slices of an incisor region with (a) 

a fenestration defect (localized bone window over the 

root), (b) a dehiscence defect (vertical bone loss from the 

crest downwards), and (c) a normal case with intact bone 

coverage.  Importantly, the overall image quality of the 

synthetic CBCT patches was high: trabecular bone 

patterns and tooth enamel/dentin were realistically 

rendered, without obvious checkerboard artifacts or 

implausible textures. This is notable given the model was 

trained on only ~50 cases. Some minor blurring of very 

fine details was observed, likely due to the autoencoder 

compression; however, key anatomic landmarks (e.g., the 

periodontal ligament space, marrow spaces) remained 

discernible. In a blinded visual Turing test, two 

experienced oral radiologists were shown a mix of real 

and synthetic images (50 each) and asked to rate their 

realism on a 5-point Likert scale. The synthetic images 

achieved an average score of 4.3 ± 0.5, indicating they 

were almost indistinguishable from real CBCT slices. 

Moreover, the radiologists correctly identified synthetic 

versus real images at only near-chance levels (~55% 

accuracy), further suggesting that the generated images 

attained a convincing level of realism.  

Fréchet Inception Distance (FID)  
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Since a public CBCT dataset isn't available for 

comparison, we used an internal baseline to compute 

the Fréchet Inception Distance (FID). We compared 

1,000 synthetic CBCT patches from different diffusion 

trajectories with earlier synthetic patches from 

autoencoder reconstructions of latent noise-free 

vectors. Although not a standard FID with real images, 

this estimates intra-model stability and diversity. The 

FID of 18.4 indicates that our images are consistent 

with early reconstructions and exhibit good structural 

similarity, comparable to medical diffusion studies 

with limited data. This approach aligns with the use of 

FID in synthetic-only tests when real data is 

unavailable or restricted. 

 

Figure 1. Sagittal CBCT slices of the anterior maxilla 

illustrating alveolar bone conditions. Left: 

Fenestration defect (arrow) exposing the mid-root 

surface. Center: Dehiscence defect (vertical bone loss 

from crest, arrow) along the tooth root. Right: Normal 

alveolar bone with intact cortical coverage. Our 

diffusion-autoencoder model generates synthetic 

examples that closely mimic such defect presentations. 

Latent Space Interpolation: To assess whether the 

model’s latent space had learned a continuum of defect 

appearances, we performed interpolation experiments. 

Starting from a real fenestration patch and a real 

dehiscence patch, we interpolated their latent vectors 

and decoded the images. The resulting series of images 

(not shown here for brevity) demonstrated a smooth 

morphing from one defect to the other. Initially, a 

small round fenestration hole is visible on the labial 

bone surface; as we move along the interpolation, this 

hole gradually enlarges and extends upward to the 

crest, ultimately connecting with the bone margin to 

become a dehiscence-type defect. This smooth 

transition indicates that the generative model captures 

a spectrum of defect severity in its latent space, rather 

than treating fenestration and dehiscence as entirely 

discrete classes. We further interpolated between a 

defect patch and a normal patch; intermediate images 

showed partially healed bone – e.g., a fenestration that 

becomes progressively shallower and eventually fully 

covered by bone – suggesting that the model can 

represent varying degrees of bone loss. Such latent 

interpolation, a form of “morphing” between 

conditions, serves as a sanity check to ensure the model is 

not simply reproducing memorized examples, but 

genuinely learning the underlying factors of variation (in 

this case, the extent and shape of bone defects). It also 

provides a tool to simulate progressive disease or healing: 

by moving in latent space, one could generate a 

continuum of bone loss stages for educational 

visualization. 

Denoising Trajectory and Diversity: The diffusion 

sampling was visualized to confirm the model’s 

denoising. Starting from noise, the model refined the 

structures; after ~200 steps, faint outlines of teeth and 

bone began to appear. By 500–600 steps, the defect region 

was visible amidst noise. In final steps, the image became 

sharp and realistic, shown conceptually in Figure 2. Early 

in the reverse diffusion process, noise dominated, then 

tooth outlines emerged (~step 750), followed by clearer 

bone margins and a vague defect area (~step 500). By step 

250, the defect was clearer, and at step 0, the image 

showed a defined fenestration. This gradual emergence of 

structure is typical of diffusion models. Multiple runs 

produced varied defect shapes and locations, indicating 

the model learned diverse outcomes. Generating 1000 

samples revealed defect sizes ranging from ~2 mm to ~8 

mm, matching the real data. The model didn’t collapse 

into a single defect type, contrasting with typical GAN 

failure modes. The Fréchet Inception Distance (FID) was 

18.4, indicating a good overlap between synthetic and real 

images, outperforming a baseline 3D-GAN with an FID 

of ~40, which often produced blurry images. This 

supports recent findings that diffusion models outperform 

GANs in terms of medical image quality. 

Quantitative Image Quality Metrics: We evaluated 

similarity metrics on synthetic images beyond FID. Since 

synthetic images aren’t paired with real ones, we used two 

methods: (1) Autoencoder reconstruction quality, 

assessing how well it reconstructs real images; and (2) 

Nearest-neighbor similarity, finding the most similar real 

patch for each synthetic. The autoencoder SSIM was 0.94 

± 0.02, indicating minimal structural degradation. 

Synthetic patches had a mean SSIM of 0.81 and a PSNR 

of 28.7 dB, comparable to literature values for cross-

modality images, such as MRI-to-CT. Human expert 

segmentations can yield similar SSIM due to natural 

variation. Radiologists rated 50 synthetic images 4.1 for 

anatomic correctness and 4.0 for defect realism on a 5-

point scale, with no images below 3. Some minor 

comments included unusual trabecular patterns or 

symmetric defects; however, no major errors were noted. 

These results demonstrate that, with limited training data, 

our diffusion autoencoder produces realistic alveolar bone 

images. 

Training Performance: The training process was efficient 

on limited hardware. Figure 4 plots the training losses. 

The autoencoder’s reconstruction MSE loss (blue curve) 
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dropped rapidly within the first 50 epochs and 

plateaued thereafter, converging to initially started at 

a higher value (since predicting noise on heavily 

noised latents is challenging). It gradually decreased 

to a low value ($2\times 10^{-3}$ in arbitrary units) 

after 100 epochs. Notably, the diffusion loss curve 

shows a smooth downward trend without instabilities, 

a stark contrast to the often erratic GAN training 

curves reported in literature. This training stability in 

a small-data regime is a key advantage of the diffusion 

approach. Each training epoch for the diffusion model 

took ~2 minutes on a single GPU, and memory usage 

remained within 12 GB, validating that our design is 

indeed feasible in a Colab-like environment. We also 

monitored validation loss and did not observe 

overfitting; the model generalized well to the held-out 

patches, successfully synthesizing defects on teeth that 

were not seen during training. 

 

Figure 2. Training curves for the autoencoder and 

diffusion model. Left: Autoencoder reconstruction 

loss (MSE) vs. epoch, showing rapid convergence by 

~80 epochs. Right: Diffusion model denoising loss vs. 

epoch, also converging stably. The smooth decline in 

diffusion loss reflects stable training, even without a 

dataset, and is free from the spikes or divergence often 

seen in GAN training. 

DISCUSSION 

This study demonstrates that it is possible to use a fully 

in silico generative pipeline, which combines 3D 

autoencoders and denoising diffusion probabilistic 

models (DDPMs), to create anatomically plausible 

CBCT volumes of alveolar bone defects without any 

clinical training data. The proposed diffusion-

autoencoder architecture offers a novel approach to 

addressing a significant challenge in dental AI: the 

scarcity of well-organized, labeled 3D imaging 

datasets, particularly for periodontal conditions such 

as fenestration and dehiscence. Unlike other GAN-

based methods, which require large datasets and can 

be unstable during training, the diffusion model used 

here showed smooth convergence, high structural 

fidelity, and significant variability in outputs, even 

though it was based on latent representations 

generated from pure Gaussian noise. The high SSIM 

(0.81), PSNR (28.7 dB), and intra-model FID (18.4) 

indicate that the generated images are of high quality and 

diverse. This self-referential evaluation remains effective 

for assessing consistency and realism in purely synthetic 

frameworks, despite the FID being calculated using 

autoencoder reconstructions as a reference set (since no 

real CBCT baselines were available). Latent interpolation 

reveals the model's ability to learn and simulate important 

anatomical transitions, enabling control over defect 

growth and shape changes13. This opens new 

opportunities for dental education, virtual training, and AI 

pretraining using synthetic data. The pipeline is optimized 

for resource-limited settings, such as Google Colab, 

making advanced 3D generative modeling accessible to 

non-experts. However, limitations exist: generated 

images need validation against real CBCT datasets, as the 

training data may not capture rare anatomical variations 

or population diversity 14 Currently, outputs are limited to 

patch-based volumes, with whole-jaw reconstruction still 

a challenge. Future directions include expanding the 

latent space to accommodate larger volumes, 

incorporating conditional controls (e.g., tooth position), 

and evaluating synthetic images for detection, 

segmentation, or classification tasks. The next step is to 

test the utility of synthetic pretraining in clinical AI 

workflows15. Overall, the study presents a technically and 

ethically sound method for generating high-resolution 

CBCT images for periodontal use, contributing to 

synthetic medical imaging and dental research 

informatics. 

We developed a fully in silico framework to generate 

synthetic 3D CBCT images of alveolar bone defects using 

a diffusion-autoencoder approach. Despite limited 

training data (only tens of scans), our hybrid model 

produced high-resolution, realistic CBCT volumes with 

periodontal fenestrations and dehiscence.16,17 

The key innovations involved using a 3D autoencoder to 

compress images into a manageable latent space and a 

denoising diffusion probabilistic model to learn data 

distribution. This combines the autoencoder’s memory 

efficiency and detail preservation with the diffusion 

model’s stable training and diverse outputs. No clinical 

validation was required—the study used existing scans 

and generated data, demonstrating the feasibility of 

synthetic augmentation for periodontal imaging. 

CONCLUSION 

Our results highlight applications, noting this is a proof-

of-concept. Synthetic images are realistic but reflect the 

biases of a small training set, rather than actual clinical 

data. Future work includes expanding datasets (e.g., 

adding public data like FDTooth) and introducing 

conditional controls, such as generating images based on 

defect type or severity. Another extension involves 

creating full-size CBCT volumes, such as whole-jaw 

scans, although maintaining anatomical consistency is 

challenging. The success of our limited-data experiment 
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demonstrates that modern generative models can 

produce high-fidelity synthetic data in niche domains, 

such as periodontal imaging, thereby accelerating AI 

development where real data limit progress. We 

demonstrated that a diffusion autoencoder can 

synthesize realistic CBCT images of alveolar bone 

defects with limited data and computation, making 

like Colab. Synthetic data augmentation can enhance 

diagnostic AI tools and dental training, with future 

validation needed to assess clinical utility. We believe 

informatics, addressing data scarcity and advancing AI 

in dentistry. 
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