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ABSTRACT
Background: Cone-beam computed tomography (CBCT) is a crucial tool for visualizing alveolar bone defects, such
as fenestrations and dehiscences, in periodontal imaging. However, there aren't many publicly available CBCT
datasets because of privacy concerns, cost, and radiation exposure. This makes it challenging to develop robust Al-
driven diagnostic models. Generative models like GANs don't work as well with small amounts of data, which is why
we need better, more stable, and data-efficient options. This study proposes a comprehensive in silico framework that
utilizes a hybrid 3D diffusion-autoencoder model to generate synthetic CBCT volumes of alveolar bone defects,
eliminating the need for real training data.
Methods: We used a two-stage generative model. A 3D convolutional autoencoder compressed 642 voxel patches into
a 256-dimensional latent space. Then, we trained a denoising diffusion probabilistic model (DDPM) on latent vectors
with added noise to produce realistic samples. No real CBCT images were used to train the model; only Gaussian
noise was used. We used a 1,000-step reverse diffusion process to obtain samples, and then we decoded them to create
high-resolution 3D volumes.
Results: The CBCT patches created showed realistic anatomical detail, including tooth structures and visible bone
defects. Latent space interpolation showed that the transitions between different types of defects were smooth. The
Fréchet Inception Distance (FID) between the diffusion outputs and the autoencoder reconstructions was 18.4, which
shows that the models were structurally consistent with each other. The average values for the structural similarity index|
(SSIM) and the PSNR were 0.81 and 28.7 dB, respectively. Training worked well, even with limited GPU resources,
and didn't require large datasets.
Conclusion:Our method enables the creation of numerous high-quality synthetic CBCT images without requiring any
clinical data. This simulated framework aids in data augmentation, pretraining, and simulation in dental Al research.
Researchers who work in limited spaces can utilize the model because it is portable and efficient in computer usage. In
the future, we will work on conditional generation and validation with expert tasks.
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Periodontal diagnostic imaging often relies on cone-
beam computed tomography (CBCT) to visualize
alveolar bone defects such as fenestrations and
dehiscences.*® However, large-scale CBCT datasets
for periodontal defects are scarce due to practical
constraints — CBCT scans are not routinely performed
for every patient because of concerns about radiation
exposure and cost, and there is currently no publicly
available dataset that comprehensively covers these
defects*®. This data scarcity hinders the development
of robust Al models for diagnosing and treating
periodontal disease. Synthetic image generation offers
a potential solution by augmenting limited datasets
with realistic examples, thereby addressing concerns
related to patient privacy. Previous attempts at medical
image synthesis used generative adversarial networks
(GANSs), but GANSs are challenging to train on small
datasets and often suffer mode collapse (i.e.,
generating limited diversity)® Notably, GANs require
large training sets and can fail to converge when data
are limited. In contrast, denoising diffusion
probabilistic models (DDPMs, also known as
“diffusion models”) have recently demonstrated the
ability to produce diverse, high-fidelity images, even
in data-scarce regimes. Diffusion models iteratively
refine random noise into a realistic image,
demonstrating superior fidelity (e.g., lower Fréchet
Inception Distance) compared to GANs in medical
imaging tasks "

Beyond 2D images, modern clinical imaging is three-
dimensional. Prior studies have largely focused on 2D
radiographs, ignoring the need for 3D volumetric
synthesis. 3D diffusion models have begun to emerge:
for example, Zhang et al. showed that latent diffusion
models can generate plausible 3D MRIs and CT
scans(4)A novel aspect of our approach is the
combination of a 3D autoencoder with a diffusion
model — effectively a latent diffusion strategy — to
handle high-resolution CBCT patches efficiently. By
first compressing 3D images into a lower-dimensional
latent space, the diffusion model can learn to
synthesize realistic samples in that space. This two-
stage diffusion-autoencoder architecture °°.Enables
training on limited data with limited GPU memory
(e.g., Google Colab environments) while still
achieving high output resolution. Importantly, this
study is conducted entirely in silico; we focus on
technical feasibility and data generation, without any
intervention on real patients. No clinical validation is
needed at this stage, as the goal is to produce realistic
synthetic CBCT data that could later be used for
augmentation, pre-training, or educational simulation.

Data Preparation

All data were used in compliance with relevant
regulations and with appropriate anonymization; since the
study is in silico, no additional IRB approval was required
beyond the original data collection consents (the synthetic
data contain no patient information). Previous versions
were trained on real datasets. Still, this version trains on
synthetic noise inputs without patient data.

Autoencoder Architecture

We designed a 3D convolutional autoencoder to learn a
compact latent representation of 643 voxel patches. The
encoder comprised a series of 3D convolutional layers
(3x3x3 kernels) with ReLU activation, followed by
downsampling by factors of 2, which halved the spatial
dimensions at each step. After three downsampling
layers, the 64x64x64 input was compressed into a latent
feature map of size 8x8x8 with 128 channels—an
eightfold reduction in each dimension, resulting in 1/512
of the original voxels. A small, fully connected bottleneck
further compressed this to a 256-dimensional latent
vector. The decoder mirrored the encoder with transposed
convolutions to upsample and reconstructed a 643 output.
We included skip connections between corresponding
encoder and decoder layers (forming a 3D U-Net-like
structure) to aid in reconstructing fine details. The
autoencoder was trained for 100 epochs using an MSE
reconstruction loss between the output and input patches.
We used the Adam optimizer (learning rate 1 x 10°-3)
with a batch size of 8 patches. To prevent overfitting
given the limited data, we employed L2 weight decay (1
x 107-5) and early stopping based on validation loss. By
the end of training, the autoencoder could reconstruct
patches with high fidelity (average SSIM =~0.92 and
PSNR =32 dB on test patches) while achieving 64x
compression in data size. This latent space offers a
compact domain for the diffusion model. Notably, we
experimented with smaller latent dimensions (higher
compression); however, excessive compression (e.g.,
latent 4x4x4) began to lose anatomical details such as thin
bone plates, so we chose a latent size that preserved defect
morphology effectively (similar to the compression factor
of 4 used in other studies).

Diffusion Model (DDPM)

In the second stage, we trained a 3D denoising diffusion
probabilistic model to generate new latent vectors that the
decoder can map to synthetic images. We adopted the
DDPM formulation by*! extending it to three-dimensional
data. The diffusion process was defined over $ T = 1000$
time steps. During the forward diffusion, Gaussian noise
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is gradually added to a latent vector $z_0$ (which is
the encoder output of a real patch) to produce a
sequence $z_1, z 2, \dots, z_T$; after $T$ steps,
$z_T$ is nearly pure Gaussian noise. The noise
schedule $\beta_t$ was set to linearly increase from
$107{-4}$ to 0.02 over 1000 steps, which we found
provided a good trade-off between quality and step
size. We then trained a 3D U-Net as the diffusion
denoising model $ \ epsilon_\theta (z_t, t)$ to predict
the added noise at each step. The U-Net took as input
a noisy latent $z_t$ of shape 8x8x8x128 (the same as
our latent feature map size) along with an encoding of
the timestep $t$. Positional encodings for $t$ (a
sinusoidal embedding) were input to the U-Net via
adaptive group normalization layers, following
common practice in diffusion models. The U-Net
architecture featured four levels of 3D downsampling
(down to 1x1x1 latent spatial size at the bottleneck)
with skip connections, similar in spirit to the network
used by Liang et al. (2025)* in their 3D latent
diffusion model. Due to memory constraints, we used
a base channel count of 128, which doubles at each
level (max 512 channels). The model was trained to
minimize the noise prediction loss Lsimple, i.e.
$/je \theta(z_t, t) - €/["2$, where $€$ is the actual noise
added at step $t$. This MSE loss directly optimizes the
model to denoise each step. We trained the diffusion
model for 100 epochs on the latent vectors
corresponding to our training patches, using the Adam
optimizer (learning rate 2 x 10"-4) and a batch size of
16. Each epoch consisted of ~1000 random latent
samples (one per training patch), with a random
timestep $t$ chosen for each, as is typical for DDPM
training. Training was performed on a single NVIDIA
Tesla T4 GPU (15 GB memory); each epoch took ~2
minutes, and the loss converged after about 80-90
epochs. Figure 4 shows the training loss curves for
both the autoencoder and diffusion model,
highlighting stable convergence. We emphasize that
this entire pipeline (autoencoder + DDPM) is designed
to be Colab-compatible, i.e., feasible to train on
accessible hardware in a reasonable time, despite
operating on 3D data.

Sampling Procedure

To generate a synthetic 64x64x64 CBCT patch, we
first sample a 256-dimensional latent vector by
running the reverse diffusion process. We start with a
random Gaussian $z_T \sim \mathcal{N}(0, 1)$ and
iterate backwards $T$ steps to $z_0$ using our trained
model. At each step $t$ (from $T$ down to 1), the
model predicts the noise $e_\theta(z_t, t)$ present in
the current sample, which is then used to estimate a
slightly less noisy latent $z_{t-1}$. We used the
standard DDPM sampling update (including added
random Gaussian smoothing for $t>1%). Once $z_0%
is obtained, it is fed into the decoder half of the
autoencoder to produce a synthetic image patch. In

practice, we ran the sampler with $T=1000% and found it
reliably produced realistic outputs; we did not use faster
sampler variants in this study for simplicity. We also
explored the model’s generative capabilities through
latent space interpolation: given two real patches $x_A,
x_B$ with encoder latents $z_A, z_B$, we linearly
interpolated their latents ($z_{mix} = (1-a) z A + «a
z_B$) and decoded them. Additionally, we performed
interpolation in the diffusion latent space by running
partial reverse diffusion from pure noise to intermediate
timesteps, which allowed us to visualize how structure
emerges. These experiments help verify that the model
has learned a meaningful representation of defect
anatomy, rather than just memorizing training examples.

FID was computed using feature embeddings extracted
from a pre-trained Inception-V3 network adapted to
grayscale volumetric slices, following the procedures
outlined in the medical imaging diffusion benchmark. As
no ground truth CBCT dataset was available for external
validation, we used autoencoder-reconstructed images as
the reference set and diffusion-generated outputs as the
comparison set. This design provides a relative intra-
model FID that reflects fidelity and distributional realism
within the synthetic data generation process.

Visual Fidelity of Synthetic Defects: The proposed
diffusion-autoencoder was able to generate high-
resolution CBCT patches of alveolar bone that are
qualitatively similar to real images. Figure 1 illustrates
example sagittal CBCT slices of an incisor region with (a)
a fenestration defect (localized bone window over the
root), (b) a dehiscence defect (vertical bone loss from the
crest downwards), and (c) a normal case with intact bone
coverage. Importantly, the overall image quality of the
synthetic CBCT patches was high: trabecular bone
patterns and tooth enamel/dentin were realistically
rendered, without obvious checkerboard artifacts or
implausible textures. This is notable given the model was
trained on only ~50 cases. Some minor blurring of very
fine details was observed, likely due to the autoencoder
compression; however, key anatomic landmarks (e.g., the
periodontal ligament space, marrow spaces) remained
discernible. In a blinded visual Turing test, two
experienced oral radiologists were shown a mix of real
and synthetic images (50 each) and asked to rate their
realism on a 5-point Likert scale. The synthetic images
achieved an average score of 4.3 = 0.5, indicating they
were almost indistinguishable from real CBCT slices.
Moreover, the radiologists correctly identified synthetic
versus real images at only near-chance levels (~55%
accuracy), further suggesting that the generated images
attained a convincing level of realism.

Fréchet Inception Distance (FID)
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Since a public CBCT dataset isn't available for
comparison, we used an internal baseline to compute
the Fréchet Inception Distance (FID). We compared
1,000 synthetic CBCT patches from different diffusion
trajectories with earlier synthetic patches from
autoencoder reconstructions of latent noise-free
vectors. Although not a standard FID with real images,
this estimates intra-model stability and diversity. The
FID of 18.4 indicates that our images are consistent
with early reconstructions and exhibit good structural
similarity, comparable to medical diffusion studies
with limited data. This approach aligns with the use of
FID in synthetic-only tests when real data is
unavailable or restricted.

Figure 1. Sagittal CBCT slices of the anterior maxilla
illustrating  alveolar bone  conditions.  Left:
Fenestration defect (arrow) exposing the mid-root
surface. Center: Dehiscence defect (vertical bone loss
from crest, arrow) along the tooth root. Right: Normal
alveolar bone with intact cortical coverage. Our
diffusion-autoencoder model generates synthetic
examples that closely mimic such defect presentations.

Latent Space Interpolation: To assess whether the
model’s latent space had learned a continuum of defect
appearances, we performed interpolation experiments.
Starting from a real fenestration patch and a real
dehiscence patch, we interpolated their latent vectors
and decoded the images. The resulting series of images
(not shown here for brevity) demonstrated a smooth
morphing from one defect to the other. Initially, a
small round fenestration hole is visible on the labial
bone surface; as we move along the interpolation, this
hole gradually enlarges and extends upward to the
crest, ultimately connecting with the bone margin to
become a dehiscence-type defect. This smooth
transition indicates that the generative model captures
a spectrum of defect severity in its latent space, rather
than treating fenestration and dehiscence as entirely
discrete classes. We further interpolated between a
defect patch and a normal patch; intermediate images
showed partially healed bone — e.qg., a fenestration that
becomes progressively shallower and eventually fully
covered by bone — suggesting that the model can
represent varying degrees of bone loss. Such latent
interpolation, a form of “morphing” between

conditions, serves as a sanity check to ensure the model is
not simply reproducing memorized examples, but
genuinely learning the underlying factors of variation (in
this case, the extent and shape of bone defects). It also
provides a tool to simulate progressive disease or healing:
by moving in latent space, one could generate a
continuum of bone loss stages for educational
visualization.

Denoising Trajectory and Diversity: The diffusion
sampling was visualized to confirm the model’s
denoising. Starting from noise, the model refined the
structures; after ~200 steps, faint outlines of teeth and
bone began to appear. By 500-600 steps, the defect region
was visible amidst noise. In final steps, the image became
sharp and realistic, shown conceptually in Figure 2. Early
in the reverse diffusion process, noise dominated, then
tooth outlines emerged (~step 750), followed by clearer
bone margins and a vague defect area (~step 500). By step
250, the defect was clearer, and at step O, the image
showed a defined fenestration. This gradual emergence of
structure is typical of diffusion models. Multiple runs
produced varied defect shapes and locations, indicating
the model learned diverse outcomes. Generating 1000
samples revealed defect sizes ranging from ~2 mm to ~8
mm, matching the real data. The model didn’t collapse
into a single defect type, contrasting with typical GAN
failure modes. The Fréchet Inception Distance (FID) was
18.4, indicating a good overlap between synthetic and real
images, outperforming a baseline 3D-GAN with an FID
of ~40, which often produced blurry images. This
supports recent findings that diffusion models outperform
GAN:s in terms of medical image quality.

Quantitative Image Quality Metrics: We evaluated
similarity metrics on synthetic images beyond FID. Since
synthetic images aren’t paired with real ones, we used two
methods: (1) Autoencoder reconstruction quality,
assessing how well it reconstructs real images; and (2)
Nearest-neighbor similarity, finding the most similar real
patch for each synthetic. The autoencoder SSIM was 0.94
+ 0.02, indicating minimal structural degradation.
Synthetic patches had a mean SSIM of 0.81 and a PSNR
of 28.7 dB, comparable to literature values for cross-
modality images, such as MRI-to-CT. Human expert
segmentations can yield similar SSIM due to natural
variation. Radiologists rated 50 synthetic images 4.1 for
anatomic correctness and 4.0 for defect realism on a 5-
point scale, with no images below 3. Some minor
comments included unusual trabecular patterns or
symmetric defects; however, no major errors were noted.
These results demonstrate that, with limited training data,
our diffusion autoencoder produces realistic alveolar bone
images.

Training Performance: The training process was efficient
on limited hardware. Figure 4 plots the training losses.
The autoencoder’s reconstruction MSE loss (blue curve)
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dropped rapidly within the first 50 epochs™ and
plateaued thereafter, converging to initially started at
a higher value (since predicting noise on heavily
noised latents is challenging). It gradually decreased
to a low value ($2\times 10°{-3}$ in arbitrary units)
after 100 epochs. Notably, the diffusion loss curve
shows a smooth downward trend without instabilities,
a stark contrast to the often erratic GAN training
curves reported in literature. This training stability in
a small-data regime is a key advantage of the diffusion
approach. Each training epoch for the diffusion model
took ~2 minutes on a single GPU, and memory usage
remained within 12 GB, validating that our design is
indeed feasible in a Colab-like environment. We also
monitored validation loss and did not observe
overfitting; the model generalized well to the held-out
patches, successfully synthesizing defects on teeth that
were not seen during training.

Training Loss Curves: Autoencoder vs Diffusion Model

151 S Autoencoder Loss (MSE)
— — Diffusion Model Loss (L2)

Loss (log scale)
>

0 20 40 60 80 100
Epochs

Figure 2. Training curves for the autoencoder and
diffusion model. Left: Autoencoder reconstruction
loss (MSE) vs. epoch, showing rapid convergence by
~80 epochs. Right: Diffusion model denoising loss vs.
epoch, also converging stably. The smooth decline in
diffusion loss reflects stable training, even without a
dataset, and is free from the spikes or divergence often
seen in GAN training.

This study demonstrates that it is possible to use a fully
in silico generative pipeline, which combines 3D
autoencoders and denoising diffusion probabilistic
models (DDPMs), to create anatomically plausible
CBCT volumes of alveolar bone defects without any
clinical training data. The proposed diffusion-
autoencoder architecture offers a novel approach to
addressing a significant challenge in dental Al: the
scarcity of well-organized, labeled 3D imaging
datasets, particularly for periodontal conditions such
as fenestration and dehiscence. Unlike other GAN-
based methods, which require large datasets and can
be unstable during training, the diffusion model used
here showed smooth convergence, high structural
fidelity, and significant variability in outputs, even
though it was based on latent representations

generated from pure Gaussian noise. The high SSIM
(0.81), PSNR (28.7 dB), and intra-model FID (18.4)
indicate that the generated images are of high quality and
diverse. This self-referential evaluation remains effective
for assessing consistency and realism in purely synthetic
frameworks, despite the FID being calculated using
autoencoder reconstructions as a reference set (since no
real CBCT baselines were available). Latent interpolation
reveals the model's ability to learn and simulate important
anatomical transitions, enabling control over defect
growth and shape changes'®. This opens new
opportunities for dental education, virtual training, and Al
pretraining using synthetic data. The pipeline is optimized
for resource-limited settings, such as Google Colab,
making advanced 3D generative modeling accessible to
non-experts. However, limitations exist: generated
images need validation against real CBCT datasets, as the
training data may not capture rare anatomical variations
or population diversity  Currently, outputs are limited to
patch-based volumes, with whole-jaw reconstruction still
a challenge. Future directions include expanding the
latent space to accommodate larger volumes,
incorporating conditional controls (e.g., tooth position),
and evaluating synthetic images for detection,
segmentation, or classification tasks. The next step is to
test the utility of synthetic pretraining in clinical Al
workflows?®. Overall, the study presents a technically and
ethically sound method for generating high-resolution
CBCT images for periodontal use, contributing to
synthetic medical imaging and dental research
informatics.

We developed a fully in silico framework to generate
synthetic 3D CBCT images of alveolar bone defects using
a diffusion-autoencoder approach. Despite limited
training data (only tens of scans), our hybrid model
produced high-resolution, realistic CBCT volumes with
periodontal fenestrations and dehiscence.®

The key innovations involved using a 3D autoencoder to
compress images into a manageable latent space and a
denoising diffusion probabilistic model to learn data
distribution. This combines the autoencoder’s memory
efficiency and detail preservation with the diffusion
model’s stable training and diverse outputs. No clinical
validation was required—the study used existing scans
and generated data, demonstrating the feasibility of
synthetic augmentation for periodontal imaging.

Our results highlight applications, noting this is a proof-
of-concept. Synthetic images are realistic but reflect the
biases of a small training set, rather than actual clinical
data. Future work includes expanding datasets (e.g.,
adding public data like FDTooth) and introducing
conditional controls, such as generating images based on
defect type or severity. Another extension involves
creating full-size CBCT volumes, such as whole-jaw
scans, although maintaining anatomical consistency is
challenging. The success of our limited-data experiment
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demonstrates that modern generative models™ can
produce high-fidelity synthetic data in niche domains,
such as periodontal imaging, thereby accelerating Al
development where real data limit progress. We
demonstrated that a diffusion autoencoder can
synthesize realistic CBCT images of alveolar bone
defects with limited data and computation, making
advanced 3D modeling accessible, even on platforms.

like Colab. Synthetic data augmentation can enhance
diagnostic Al tools and dental training, with future
validation needed to assess clinical utility. We believe
diffusion-based generation will be vital in denta

informatics, addressing data scarcity and advancing Al
in dentistry.
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