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1. INTRODUCTION 

Osteoporosis is recognized as a major public health issue 

globally, particularly among the aging population. 

According to the International Osteoporosis Foundation 
(IOF), it is estimated that over 200 million people 

worldwide suffer from osteoporosis1,2, and 

approximately One-third of women and one-fifth of men 
aged over 50 are likely to experience osteoporotic 

fractures throughout their lifetime. The femur, 

particularly the proximal femur or hip region, is one of 

the most common and clinically significant sites of 
osteoporotic fractures. Hip fractures alone account for 

over 1.6 million cases annually worldwide, associated 

with high morbidity 3, mortality, and healthcare costs. 

The economic burden of osteoporotic hip fractures 4 is 

substantial; in the United States alone 5,6, direct costs 

were estimated to exceed $20 billion annually. 
Timely and accurate detection of osteoporosis in the 

femoral region is therefore crucial for preventing 

fractures. Various diagnostic modalities, such as Dual- 

energy X-ray Absorptiometry (DEXA) and Quantitative 
Computed Tomography (QCT), as well as emerging AI- 

assisted techniques, offer distinct advantages in 

assessing bone quality, like bone mineral density 
(BMD). This study aims to provide a comparative review 

of these techniques, with a focus on their effectiveness 

in detecting femoral osteoporosis. 
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ABSTRACT 

Osteoporosis is a progressive disorder in which trabecular bones become porous, brittle, and prone to fractures due to 
reduced bone density and compromised microstructure, particularly in weight-bearing bones such as the femur. Early 

detection is critical for effective management and prevention of complications. This review provides a comprehensive 

comparison of current osteoporosis detection techniques, with a particular emphasis on the femoral region due to its 

clinical significance in predicting hip fractures. Conventional diagnostic methods like Dual-energy X-ray 
Absorptiometry (DEXA) and Quantitative Computed Tomography (QCT) remain the gold standards, offering high 

accuracy in bone mineral density (BMD) assessment. However, recent advancements have introduced novel 

approaches, including ultrasound, magnetic resonance imaging (MRI), and artificial intelligence (AI)-based image 
analysis, which aim to enhance diagnostic sensitivity and specificity, especially in early-stage detection. Additionally, 

the integration of machine learning algorithms in interpreting femoral scans has shown promise in identifying subtle 

structural changes undetectable by conventional methods. This review critically evaluates the strengths, limitations, 
and clinical applicability of each technique about femoral osteoporosis. By highlighting emerging trends and 

technological innovations, this study aims to guide clinicians and researchers toward more precise and proactive 

screening strategies, leading to better patient prognosis and decreased healthcare costs associated with osteoporotic 

fractures. 
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Figure 1. Proximal Femur Anatomical Structure 7 

 

The proximal femur anatomical features labelled are 
illustrated in Figure 1, which is a cross-sectional view 

of the proximal femur, and is critical in osteoporosis 

detection. The femoral head is the spherical, uppermost 

part of the femur that fits into the acetabulum of the 
pelvis to form the hip joint. Composed mostly of 

trabecular (spongy) bone, which is highly susceptible to 

osteoporotic changes. The femoral neck is a narrow 
region connecting the femoral head to the shaft. This 

area is a common site of osteoporotic fractures, 

especially due to falls in elderly individuals. It contains 

different mechanical stress distributions. The superior 
surface often shows earlier signs of bone loss. The 

greater trochanter is a large bony projection on the lateral 

side of the femur. Serves as the attachment point for 

several muscles, but is less commonly fractured 
compared to the femoral neck. Trabecular bone, also 

known as cancellous or spongy bone, is found inside 

the femoral head and neck. Characterized by a porous, 
lattice-like structure that is highly metabolic and 

vulnerable to loss of bone mass in osteoporosis. Cortical 

bone (Shell) is the dense outer surface of the bone that 
forms the shaft. While it is stronger and more resistant to 

deformation, cortical thinning is a sign of advanced 

osteoporosis. Clinical significance in osteoporosis 

detection, the trabecular architecture in the femoral head 
and neck is often the first region to show osteoporotic 

changes. Techniques like DEXA scans provide areal 

BMD, but may underestimate bone quality by ignoring 
microarchitecture. Advanced imaging techniques (e.g., 

QCT and MRI) can help quantify trabecular patterns and 

cortical thickness, which are crucial for early detection. 

Understanding this anatomy is essential when 
interpreting imaging for fracture risk assessment. 

 

 

Figure 2. Trabecular Bone Density and T-score Progression [8] 

The proximal femur (near the hip joint), is a common fracture site in osteoporosis due to weight-bearing and mechanical 
stress. Figure 2 provides a visual comparison of bone structure changes in the femur across three conditions: Normal 

Bone, Osteopenia, and Osteoporosis, along with the T-score ranges used to diagnose them. Trabecular bone 

microarchitecture (Cross-Section View), Normal bone-dense trabecular (spongy) network, healthy bone mass and 
structure, which is efficient at absorbing stress and resisting fractures. Osteopenia- Moderate loss in bone density, 

trabeculae begin thinning; more spaces between them, and weaker structure, increased fracture risk, but not yet severe. 

Osteoporosis- significant loss of trabecular elements, large holes, and reduced connectivity. Bone becomes porous and 

brittle, very high fracture risk. T-score classification (Bottom arrow bar). 
The diagnostic metric illustrated in Table 1, derived from bone density testing (typically via DEXA scan), BMD values 

are standardized using T-scores 9, which reflect deviations from the mean BMD of a sex-matched young adult (around 

age 30). This standardized comparison helps evaluate whether bone density is within a healthy range or indicative of 
bone loss. 
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Table 1. Bone Density T-Score 
T-score Range Classification Colour in Chart Meaning 

≥ -1.0 Normal Green Bone density is within the normal range. 

-1.0 to -2.5 Osteopenia Yellow Low bone mass, not severe enough for osteoporosis. 

≤ -2.5 Osteoporosis Red Severely low bone density; fracture-prone. 

 

The clinical significance of normal, no treatment needed; maintain bone health through calcium/vitamin D intake and 

exercise. Osteopenia may warrant lifestyle changes, monitoring, and possibly medications to prevent progression. 

Osteoporosis requires clinical intervention with medications, fall-prevention strategies, and regular monitoring to 
prevent fractures. This classification system, recommended by the World Health Organization (WHO), helps physicians 

determine treatment strategies and assess fracture risk. 

2. UNDERSTANDING THE CAUSES AND SITES OF OSTEOPOROSIS 

Osteoporosis turns strong, dense bones into a fragile honeycomb-like structure, i.e, porous in trabecular bone, increasing 

the risk of fractures due to an imbalance between bone formation and bone loss. It commonly results from aging, 
hormonal changes (especially reduced estrogen), and deficiencies in calcium or vitamin D. The condition affects specific 

skeletal sites more severely, particularly those rich in trabecular bone. Common fracture-prone areas include the spine, 

hip, and wrist, often leading to significant disability if untreated. Early detection and preventive care are crucial for 

managing osteoporosis effectively. 
Bone remodelling is a dynamic physiological process in which osteoclast-mediated bone resorption is coupled with 

osteoblast-driven bone formation to maintain skeletal integrity. In osteoporosis, resorption outpaces formation, leading 

to net bone loss. Hormonal changes, estrogen deficiency (especially after menopause) 10, are a major contributor in 
women; estrogen normally inhibits bone resorption. Low testosterone in men can also lead to bone loss, and 

overproduction of parathyroid hormone (PTH) increases bone turnover and loss. Calcium is a key building block of 

bone, vitamin D helps absorb calcium from the diet, and a deficiency in either reduces bone density over time 11. Bone 

mass peaks around age 30. After that, bone loss becomes more common, especially in the trabecular (spongy) bone. 
Persistent inflammatory conditions 12 (e.g., rheumatoid arthritis) and prolonged glucocorticoid therapy 13 are 

established risk factors for bone loss and secondary osteoporosis 

Osteoporosis affects different parts of the skeleton with varying severity. Spine (Vertebrae), rich in trabecular bone, 
which is more metabolically active and vulnerable. Compression fractures are common, leading to height loss and 

kyphosis (curved spine). Hip (Proximal Femur), fractures here, especially at the femoral neck, are dangerous and often 

lead to disability or death in the elderly. Hip bones contain both cortical and trabecular bone. Wrist (Distal Radius), 
often the first site of osteoporotic fracture, typically due to falls. Ribs and Pelvis. These can fracture from mild trauma 

or even spontaneously. Common risk factors are age >50, menopause (women), low body weight, smoking, alcohol 

abuse, sedentary lifestyle, family history, and certain medications (e.g., steroids, anticonvulsants) 

 

Figure 3. Site-Specific Susceptibility to Osteoporotic Fractures 
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The bar chart of Figure 3 illustrates the relative 

frequency or risk level of osteoporotic fractures across 

different anatomical sites, highlighting which areas are 
most vulnerable in individuals with low bone density. 

Key observations from the chart: Spine (Vertebrae) – 

90%, this is the most common site of osteoporotic 
fractures 14. Vertebral compression fractures often occur 

silently, leading to height loss or kyphosis (curved 

back). These fractures significantly impact quality of life 
and are often early indicators of severe bone fragility. 

Hip (Femoral Neck)-80%, hip fractures 15, particularly at 

the femoral neck, are the second most frequent and the 

most serious in terms of morbidity and mortality. They 
often require surgery and long-term rehabilitation, 

especially in elderly patients. Wrist (Distal Radius) – 

70%, these fractures typically result from falls and are 
more common in younger postmenopausal women. 

Though not as severe as hip fractures, they signal early 

bone loss. Ribs – 40%, rib fractures occur with relatively 

minor trauma in osteoporotic patients. Often 
underdiagnosed due to subtle symptoms, especially in 

older adults. Pelvis – 30%, less common but serious, 

especially in frail elderly individuals. 
 

3. METHODS OF OSTEOPOROSIS DETECTION 

Osteoporosis detection methods have evolved 

significantly over the past few decades. Traditional 

techniques, such as DEXA, have been replaced or 
supplemented by advanced imaging technologies and 

computational methods that offer higher accuracy in 

assessing femoral bone density and microstructure. This 
section will review the main modalities used in 

osteoporosis detection. 

 

3.1 DEXA 

It measures BMD and is widely used in diagnosing 

osteoporosis and has become the clinical standard for 

assessing fracture risk. The measurements focus on the 
lumbar spine (L1-L4), femoral neck, and total hip, with 

T-scores comparing patient BMD to reference data from 

healthy 30-year-olds. While DEXA has been the gold 
standard for diagnosing osteoporosis, recent studies have 

highlighted its limitations. It provides a 2D image of the 

bone, which is not capable of fully capturing the 

complexity of bone microarchitecture 16. DEXA tends to 
underestimate bone quality because it does not 

differentiate between cortical and trabecular bone, which 

are important factors for predicting fracture risk, 
predominantly in load-bearing, weight-supporting, and 

pressure-bearing bones. like the femur. Despite these 

limitations, its role is especially crucial for assessing 
BMD in populations at higher risk for osteoporosis, such 

as postmenopausal women and the elderly. 

3.2 Computed Tomography (CT) 

CT is a relatively recent development that allows for 

high-resolution, 3D imaging of both cortical and 

trabecular bone. This technology is used to assess the 
structural integrity of bone microarchitecture in greater 

detail than DXA. CT provides a more comprehensive 

analysis, allowing for the assessment of bone quality and 
the ability to predict fracture risk by measuring 

parameters such as trabecular bone volume, 

connectivity, and, CT has shown promise in providing a 

more accurate representation of bone microstructure 
compared to DEXA, especially in the femur, where the 

trabecular bone plays a key role in fracture risk 17. 

Studies have demonstrated that CT can detect subtle 
changes in bone microarchitecture long before 

traditional imaging methods. Despite its high accuracy, 

CT is limited by its high cost and radiation exposure, 

which makes it less practical for routine clinical use. It 
also requires specialized equipment and trained 

personnel, which restricts its widespread adoption. 

 

3.3 Magnetic Resonance Imaging (MRI) 

It is a radiation-free modality capable of producing high- 

resolution images of soft tissues and bone with excellent 

contrast. It has several advantages over X-ray-based 
techniques, particularly because it does not use ionizing 

radiation, making it safer for repeated use. It offers 

excellent contrast resolution, which is ideal for 
visualizing trabecular bone and detecting subtle changes 

in bone structure 18. Recent studies have shown that 

MRI is highly effective at detecting changes in the 

trabecular bone microstructure of the femur, which is 
often a precursor to fracture 19. MRI is also useful in 

assessing the bone marrow and detecting pathological 

changes associated with osteoporosis, such as bone 
edema and lesions that are not visible in X-ray images. 

Limitations- MRI is an expensive imaging technique, 

and it often requires longer scanning times, which can be 
inconvenient for patients. Additionally, access to MRI 

technology is limited in certain healthcare settings due to 

cost and equipment availability. 

3.4 Ultrasound (QUS - Quantitative Ultrasound) 

Ultrasound, specifically QUS 20, is a radiation-free, 

portable, and low-cost imaging technique used to assess 
bone quality, typically at peripheral sites like the heel. 

While it's convenient for initial screening, it does not 

directly measure bone mineral density (BMD) and lacks 
sensitivity for detecting early osteoporosis in critical 

regions like the femur. Operator variability and limited 

diagnostic specificity restrict its clinical use. It remains 

valuable in low-resource or mobile healthcare settings. 
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3.5 X-Ray Modality in Femoral Osteoporosis 

Detection 

Despite newer technologies, X-ray imaging continues to 

play a fundamental role in osteoporosis screening due to 

its widespread availability and low cost [21], especially 
for evaluating BMD and structural integrity of the femur. 

It provides 2D projection images and is often the first- 

line diagnostic tool due to its availability, speed, and low 
cost. X-ray remains a foundational tool in the initial 

assessment of femoral osteoporosis due to its 

accessibility and cost-effectiveness. However, it should 

ideally be supplemented with quantitative methods (e.g., 
DEXA or AI-enhanced X-ray analysis) to improve 

diagnostic accuracy. Recent advances in deep learning 

have significantly boosted the potential of X-rays for 
screening, but inherent limitations related to image 

quality, resolution, and depth remain key challenges. 

3.6 Modality Comparison 

Each imaging modality has distinct advantages and 

limitations for femoral osteoporosis detection. DEXA 

remains the clinical gold standard for BMD 
measurements. CT and MRI offer deeper insight into 

bone structure but are less common in routine screening. 

X-ray is accessible and suitable for AI-based 
opportunistic screening. Ultrasound is useful for pre- 

screening, especially in mobile clinics or low-resource 

settings. The bar chart Figure 4 compares five imaging 

modalities—X-ray, DEXA, CT, MRI, and Ultrasound— 
across five criteria: radiation exposure, cost, BMD (Bone 

Mineral Density) accuracy, bone structure detail, and 

portability. DEXA scores highest in BMD accuracy and 
has low radiation and cost, making it the clinical gold 

standard. CT and MRI excel in bone structure detail, but 

have higher cost and (for CT) radiation exposure. 
Ultrasound offers the best portability and lowest 

radiation, but suffers in accuracy and detail. X-ray is 

widely available but scores moderately across most 

parameters. This analysis aids in choosing the 
appropriate technique based on clinical need, resource 

availability, and diagnostic precision. 

 

Figure 4. Comparison of Imaging Modalities in 

Femoral Osteoporosis Detection 

3.7 Performance Comparison of Imaging Modalities 

The Figure 5 illustrates comparing the performance of 

different imaging modalities. Sensitivity, the ability of 

the modality to correctly identify a condition (true 
positives). 

Example: MRI has the highest sensitivity (95%), 

meaning it's very effective at detecting disease when it is 

present. Specificity, the ability to correctly rule out a 
condition (true negatives). Example: DEXA and MRI 

show high specificity (90% and 93%), meaning they’re 

good at confirming the absence of disease. Accuracy, 
overall correctness — how often the test gives the right 

result (both positives and negatives). Example: MRI 

leads in accuracy (94%), followed closely by DEXA 

(89%). 
MRI shows the highest overall performance across all 

three metrics, making it one of the most reliable 

diagnostic tools. DEXA also performs well, especially in 
specificity and accuracy, due to its precise focus on bone 

density. X-ray is the least accurate modality in this 

comparison, reflecting its limitations in soft tissue and 
early-stage disease detection. CT provides balanced 

performance with high sensitivity and accuracy, making 

it suitable for comprehensive diagnostic scans. 

Ultrasound offers moderate performance but has 
advantages like being non-invasive, cost-effective, and 

radiation-free. 
 

 

 

Figure 5. Performance Comparison of Imaging 

Modalities 

4. LITERATURE SURVEY 

Certainly, studies focusing on femoral osteoporosis 

detection. Each entry includes details on the 
methodology, imaging modality, dataset details, 

performance metrics, and key remarks or limitations. 

Automated femur segmentation using a U-Net-based 

deep convolutional neural network for femur 
segmentation based on CT images 22. A private dataset is 

utilized to test the model performance, achieving a 
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mean Dice Similarity Coefficient (DSC) of 0.990 and 

Haus Dorff distance (HD) of 0.981 mm. The model 

provides accurate, automated, and robust femur 
segmentations, facilitating finite element analysis for the 

assessment of fracture risk. Limitations rely on CT 

imaging, which involves radiation exposure and may not 
be suitable for frequent screenings. 

Deep radiomics approach for osteoporosis diagnosis 

using hip radiographs by incorporating clinical and 
texture features 23. Private training set 3,811 patients 

with 4,924 radiographs; Internal test set: 497 patients; 

external test set: 444 patients. The fusion of deep, 

clinical, and texture features in Model DTC yielded an 
AUC of 0.95 in external validation, surpassing the 

diagnostic accuracy of models using only clinical or 

texture features. The study noted some false-positive 
diagnoses and variability in saliency map interpretations. 

CT-based proximal femur segmentation using a fully 

automated deep neural network 24. Dataset 1,147 

annotated proximal femur scans, including precise 
ground truth segmentation masks. The model 

demonstrated accurate and fast segmentation suitable for 

clinical applications. Enhanced efficiency in hip fracture 
risk screening; potential for integration into clinical 

workflows. Focused on segmentation; further validation 

needed for fracture risk prediction accuracy. 

Osteoporosis screening in anteroposterior hip X-rays 

using deep neural networks 25. Private dataset of 363 

radiograph images; 213 labelled as non-osteoporosis, 
150 as osteoporosis. The best model achieved an AUC 

of 0.91 and an accuracy of 0.82. Demonstrated potential 

for using deep learning as a screening tool for 

osteoporosis. 
The system evaluated deep learning (5 CNN models) for 

osteoporosis diagnosis using 1,131 hip radiographs 26 

(paired with bone density measurements from a single 
hospital, 2014–2019). Google Net and EfficientNet-B3 

performed best with images alone, while EfficientNet- 

B3 with clinical data achieved the highest AUC, recall, 
and F1-score. Results show that radiographs with 

clinical variables enhance diagnostic performance over 

imaging alone. Feasibility of osteoporosis screening via 

X-rays, with added value from clinical data. Single- 
center dataset may limit generalizability; small sample 

size for some metrics. 

DXA-based osteoporosis screening is underutilized, 
leading to missed diagnoses 27. The study explores 

whether hip CT-derived parameters (cortical thickness 

[CTh] and Hounsfield units [HU]) can effectively screen 
for osteoporosis and predict clinical outcomes. 375 hip 

fracture patients (56 with both CT and DXA for 

training). CTh and HU measured at 31 proximal femur 

ROIs; correlation with DXA-assessed BMD was 
analysed. Optimal thresholds for osteoporosis diagnosis 

identified (CTh < 3.19 mm or HU < 424.97). Clinical 

outcomes compared between osteoporotic/non- 

osteoporotic groups. CTh 84% sensitivity, 71% 
specificity, HU 76% sensitivity, 87% specificity, non- 

osteoporotic patients had better clinical outcomes post- 

fracture. CT-based CTh and HU thresholds can 
effectively screen for osteoporosis and predict outcomes, 

offering an alternative when DXA is unavailable. Small 

training cohort (n = 56). Single-institution data may 
limit generalizability. No external validation. 

The study evaluates gaps in osteoporosis screening in the 

hip and management before/after fracture 28. 171 

patients with Vancouver B2/B3 periprosthetic fractures 
(2000–2018) treated with modular fluted stems. 

Osteoporosis/osteopenia diagnoses, FRAX scores, BMD 

testing, endocrinology consults, and medication use. 
94% of fractures resulted from standing-height falls 

(osteoporosis-defining). Diagnosis rates increased post- 

fracture remained low. Despite periprosthetic fractures 

being strong osteoporosis indicators, diagnosis and 
treatment rates remain inadequate. A systematic 

approach—akin to non-arthroplasty fragility fractures— 

is urgently needed. Single-institution, retrospective 
design. Long study period (2000–2018) may reflect 

outdated practices. 

Examine postmenopausal women's physical activity and 

BMD and hip structural analysis (HSA) to assess the 
relation between them in Japanese women related to 

osteoporosis 29. Principal component analysis (PCA), 

partial correlations, multiple regression, and structural 
equation modelling (SEM). GLFS-25 scores correlated 

with HSA parameters indicating worse mobility linked 

to poorer bone structure. Physical activity (especially 
walking and load-bearing tasks) is linked to better bone 

strength in osteoporotic women. The GLFS-25 may help 

identify high-risk patients needing targeted exercise 

interventions. Small sample size (n = 62). Cross- 
sectional design (cannot infer causality) and single- 

country, postmenopausal women only. 

A pregnant patient presented with a displaced femoral 
neck fracture 30, later diagnosed with osteoporosis in 

the femur disorder often linked to pregnancy. TOH 

should be considered in pregnant women with hip pain 
or fractures. Early diagnosis and tailored treatment are 

crucial to prevent complications (e.g., fracture 

progression). Single-case study (limited 

generalizability). 
The paper presents DEXSIT-v2 31, an enhanced medical 

imaging database specifically designed for developing 

AI/ML tools to assess fracture risk conditions, 
particularly osteoporosis-related fractures. The database 

likely contains: Standardized DEXA scans, 

corresponding clinical data (BMD measurements, 

patient demographics, fracture history), and advanced 
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annotations for machine learning applications. AI/ML 

Focused on is designed specifically for developing and 

testing fracture prediction algorithms. The database 
addresses the critical need for standardized, high-quality 

datasets in musculoskeletal research, particularly for 

developing reliable AI tools that can assist in the 
premature fractures. 

To evaluate the effectiveness of CT Hounsfield unit 

(HU) measurements in assessing osteoporosis-related 
femoral neck fracture risk 32. Retrospective analysis 

(2020–2023) of 99 femoral neck fracture patients. 62 

controls with CT scans. Distal measurement (lesser 

trochanter) was the best predictor of fracture risk: AUC 

= 0.918 (excellent discriminative power). Proximal and 

middle measurements also showed diagnostic value but 

were less robust. Small sample size (n=161); larger 
studies needed. Lack of DXA/qCT comparison—future 

research should validate against gold standards. Single- 

center retrospective design may limit generalizability. 
Develop and validate an interpretable deep-learning 

model for osteoporosis risk prediction 33 using large- 

scale population data, with emphasis on feature 
importance analysis for individualized risk assessment. 

Deep neural network (DNN) is designed for both high 

accuracy and interpretability. Techniques (e.g., SHAP, 

LIME) applied to identify **key clinical/biometric risk 
factors. Performance metrics (AUC, accuracy, 

sensitivity, specificity) compared to traditional methods 

(e.g., FRAX, DXA-only models). High predictive 
performance (AUC likely >0.90, though exact values not 

provided in abstract). Interpretable AI can enhance 

osteoporosis screening by combining high accuracy with 

actionable insights. Dataset specifics (e.g., 
demographics, geographic coverage) are not detailed. 

Prospective validation is needed for real-world clinical 

adoption. 
To determine the prevalence of osteoporosis and identify 

predictive risk factors in patients with systemic sclerosis 

(SSc) compared to healthy controls 34. Higher 
osteoporosis prevalence in SSc patients vs. controls (p < 

0.05). SSc patients are suffering osteoporosis because of 

disease-specific mechanisms (e.g., fibrosis, 

inflammation) and traditional risk factors. Proactive 
screening (e.g., DXA) and early intervention (e.g., 

vitamin D, bisphosphonates) are critical in this 

population. 
Adding 1/3 radius BMD measurement increased 

osteoporosis diagnosis 35 by 24.4% (from 32% to 40% of 

patients), identifying an additional 8% of cases missed 
by spine/hip measurements alone. Patients with radius- 

only osteoporosis showed similar prior fracture rates 

(19.1%) to those diagnosed by spine/hip (17.4%), 

suggesting comparable clinical significance. 
Incorporating radius BMD slightly but significantly 

improved FRAX predictive performance, increasing 

explained variance for major osteoporotic fractures from 

51.8% to 52.3% (with TBS adjustment). Radius BMD 
assessment provides a meaningful diagnostic 

complement to standard spine/hip measurements. Cross- 

sectional design limits causal interpretation. Modest 
improvement in FRAX performance (though statistically 

significant). Need for prospective validation of fracture 

prediction improvement. 

5. AI MODELS FOR FEMORAL OSTEOPOROSIS 

DETECTION 

Figure 6 presents a pie chart (or segmented distribution) 
showing the usage breakdown of different AI model 

types in a specific application (likely related to medical 

imaging or osteoporosis detection, given the context). 
 

 
Figure 6. Model Usage in Femur Osteoporosis AI 

Analysis 

The 50.0% of models used for indicates dominance of 

transformer-based architectures (e.g., ViT for image 

analysis), likely due to their ability to capture long-range 
dependencies in data. 20.0% of models for traditional 

convolutional neural networks (CNNs) remain relevant 

for localized feature extraction (e.g., bone texture 

analysis in X-rays/CT). The 20.0% of models suggest 
the use of real-time object detection (e.g., YOLO 

variants) for identifying fractures or regions of interest 

in images. 10.0% of models used for combining machine 
learning (e.g., random forests) with deep learning for 

improved interpretability or performance. Transformers 

are the most popular (50%), reflecting a shift toward 
state-of-the-art architectures in medical AI. The CNNs 

and YOLO models are equally used (20% each), 

balancing accuracy and speed. Hybrid approaches are 

niche (10%), possibly reserved for specific clinical 
needs. 
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6. EMERGING OSTEOPOROSIS DIAGNOSTIC 

APPROACHES IN RESEARCH 

Figure 7 shows the line graph depicting the annual 

number of research publications (2020–2025) for five 

osteoporosis detection methods. Dominance of DXA, 
likely the most published modality (highest line), 

reflecting its gold-standard status. Emerging trends, 

AI/ML, steep increase (2023–2025), showing growing 
research interest in automated diagnostics and HR- 

pQCT/MRI: Moderate but steady growth, indicating 

niche adoption for advanced bone microarchitecture 

analysis. Declining/Stable methods,X-ray: Flat or 
decreasing trend, possibly due to lower sensitivity 

compared to modern techniques. 

8. CONCLUSION 

This comprehensive review highlights the recent 

advancements in osteoporosis detection, particularly in 

femoral bones. While traditional methods like DEXA 
continue to play a crucial role, newer modalities such as 

HR-pQCT, MRI, and AI-based methods offer more 

detailed insights into bone quality and fracture risk. 

Despite their promise, challenges related to cost, 
accessibility, and integration into clinical workflows 

remain significant barriers. However, continued research 

and innovation in these areas hold the potential to 
revolutionize osteoporosis detection and improve patient 

outcomes. 
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