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                                                                                   ABSTRACT 

Background: Predicting healing outcomes after periodontal flap surgery is important for personalized patient care, but 

conventional machine learning methods dominate this area. Reinforcement learning (RL) approaches are rarely applied 

in periodontal clinical datasets due to data scarcity, class imbalance, and high outcome variability. This study addresses 
this gap by exploring a split-federated MonAco-style Deep Q-Network (DQN) encoder model for classifying post-

surgical healing outcomes (Good, Fair, Poor) from a small multi-center dataset. 

Materials and Methods: We analyzed a dataset of 300 periodontal surgical patients with five numeric features (age, 
probing depth, attachment loss, gingival index, and plaque index) and four categorical features (sex, smoking status, 

diabetes status, and procedure type). The data were one-hot encoded and standardized, then split into 80/20 training and 

testing sets. The training set was further partitioned into 3 “clients” to simulate federated learning across clinics. We 
implemented a MonAcoFed-DQN encoder, consisting of an online multilayer perceptron and a momentum-based target 

encoder (updated via an exponential moving average), along with a classification head. A contrastive mean-squared 

error loss was added to the cross-entropy loss to stabilize the training process. Federated training used FedAvg over 

three local epochs per round. A baseline model with a hidden size of 64, a learning rate of 1e-3, and three federated 
rounds was evaluated. A grid search over hyperparameters (hidden units {32, 64, 128}, learning rate {1e-3, 5e-4, 1e-4}, 

local epochs {5, 10}) optimized accuracy. An extended 10-round federated training with the best hyperparameters 

examined learning dynamics. Performance was compared to SOTA results from the literature on larger datasets. 
Results: The split-fed DQN encoder scored 36% accuracy, just above the 33% chance level due to class imbalance. 

Hyperparameter tuning improved accuracy to 37.1% with a wider encoder, lower learning rate, and 10 epochs. Most 

setups ranged from 20% to 35%, with a median of ~34%, where smaller models or higher learning rates underperformed. 
The learning curve peaked early at 33%, then oscillated near 30–31%, and finally ended at 31.4%. These results are 

much lower than traditional ML on larger datasets, which often achieve 78–87% accuracy/AUC. 

Conclusion: This pilot study employed a split-federated DQN encoder (MonAcoFed-DQN) on periodontal surgery data, 

demonstrating technical feasibility with momentum contrast; however, it achieved only 30–37% accuracy due to 
limitations in the dataset. It emphasizes the need for more data and balanced classes in deep reinforcement learning for 

clinical use. Simpler models or tree-based methods are suitable for small medical datasets. Future efforts should enlarge 

datasets, incorporate domain knowledge, and develop hybrid or tabular-specific deep models to enhance periodontal 
treatment predictions. 
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INTRODUCTION 
Periodontal flap surgery is a common procedure used 

to treat advanced periodontitis and regenerate 

supportive tissue. Accurately predicting the healing 

outcome (often categorized as “Good”, “Fair”, or 
“Poor”) after such surgery is valuable for tailoring 

follow-up care and managing patient expectations(1). 

Traditional statistical models and machine learning 
classifiers (e.g., logistic regression, decision trees) 

have been explored for prognosis in periodontics. In 

general, studies on larger cohorts have reported fairly 
high predictive performance. Artificial intelligence 

models for periodontitis classification in the literature 

often achieve accuracies exceeding 70–80%(2–4). 

These successes have relied on conventional 
supervised learning and substantial datasets1. 

Reinforcement learning (RL) is rarely applied in 

dental research, a(5,6)s it requires numerous 
interactions and is well-suited for sequential decisions, 

unlike clinical outcome prediction, which involves a 

single-step classification using limited data. Most 

periodontal datasets are small, imbalanced, and 
challenging for deep learning, particularly RL 

algorithms(6,7). Factors such as data scarcity, skewed 

class distributions, and outcome variability hinder AI 
applications like RL in dentistry. To our knowledge, 

no study has utilized RL-based deep networks for 

predicting periodontal surgery, making this a novel 
exploration. This study addresses a significant gap in 

our knowledge2 by examining how reinforcement 

learning (RL) can be applied more extensively in 

periodontal clinical prediction, which has primarily 
relied on supervised learning. It introduces a new split-

federated MonAco-style DQN encoder architecture 

designed for decentralized learning on small clinical 
datasets while maintaining privacy. The study is 

significant because it demonstrates the feasibility, 

limitations, and future-proof potential of applying 
advanced RL frameworks in real-world dental 

informatics, where data is often sparse, unbalanced, 

and not centralized3. 

Here, we propose a split-federated MonAco-style 
DQN encoder model to predict periodontal flap 

surgery healing outcomes. “MonAco” in this context 

refers to using a momentum-updated contrastive 
encoder, a concept inspired by momentum contrast 

learning and DQN’s target network for stabilization. 

We integrate this into a federated learning4 framework, 

simulating a scenario where multiple dental clinics 
(clients) collaboratively train a model without sharing 

patient data. Federated learning can be advantageous 

for privacy, but with few samples per clinic, it further 
complicates model training. We aim to assess the 

feasibility and performance of this advanced RL-

inspired approach on a small tabular clinical dataset. 
We specifically highlight the gap between our 

method’s performance and that of state-of-the-art 

models from the literature (such as gradient boosting 

or TabNet) on much larger datasets. By doing so, we 
illustrate the challenges and future needs for applying 

reinforcement learning in periodontal outcome 

prediction5. 

METHODS 
Data Source and Preprocessing 

 
Figure 1. shows the workflow of the study 

This study employed a retrospective analysis of a de-
identified dataset comprising 300 patients who underwent 

periodontal flap surgery. The data was sourced from the 

information systems of Saveetha Dental College and 
Hospitals, with each entry representing a unique patient. 

Each record was labeled with a Healing Outcome (Good, 

Fair, or Poor) assigned at a follow-up visit based on 

clinical criteria. There were 12 input features: five 
numeric and four categorical (with the remainder being 

identifiers or redundant fields). Numeric predictors 

included: age (years), probing depth (mm) at the site, 
clinical attachment loss (mm), gingival index, and plaque 

index. Categorical predictors included patient sex 

(Male/Female), smoking status (Current/Former/Non-

smoker), diabetes status (Yes/No), and surgical procedure 
type (e.g., open flap debridement, regenerative procedure, 

etc.). An anonymized patient ID and a binary indicator for 

bleeding on probing were present in the raw data. Still, 
they were excluded from modeling (patient ID as a unique 

identifier, and bleeding on probing was deemed redundant 

after initial inspection). The final feature set thus 
comprised nine features (five numeric and four 

categorical). The target variable was the healing outcome 

class, with a distribution of ~40% Good, 40% Fair, and 

20% Poor, reflecting a moderate class imbalance (with 
fewer Poor outcomes) (fig-1).6 

All categorical features were encoded using one-hot 

encoding (with handle_unknown='ignore' to encode any 
rare categories safely). Continuous features were 

standardized (z-scored) to have a mean of 0 and a unit 

variance, ensuring that all features were on comparable 
scales for network training. After preprocessing, the data 

matrix had d_input X.shape[1] = (5 numeric + expanded 

categorical). The exact input dimension after one-hot 

encoding was 5 + (2 categories for Sex) + (3 categories 
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for Smoking) + (2 categories for Diabetes) + (N 
categories for Procedure types)7. In our data, the 

procedure had several distinct types, resulting in a total 

input dimension of 5 + 2 + 3 + 2 + p (where p is the 

number of procedure categories). The final input 
vector length was 15 after encoding (since “Sex” and 

“Diabetes” contributed one dummy each after 

dropping the reference level, “Smoking” 2 dummies, 
and “Procedure” 5 dummies in this dataset)8. 

We split the dataset into 80/20 for training and testing, 

maintaining the proportions of Good/Fair/Poor 
outcomes. This gave 40 training and 10 test samples. 

We divided the training set into three equal parts, each 

containing 13, 13, and 14 samples, to mimic a 

federated learning scenario with three clients, each 
representing a clinical patient with partial data. The 

split was random but stratified, ensuring each client 

saw some examples of each class, despite some class 
imbalance9.  

Model Architecture 

We designed a neural network called MonAcoFed-

DQN, inspired by DQN reinforcement learning and 
momentum contrast. It has three parts: the Online 

Encoder, a two-layer MLP with tunable hidden units 

(32, 64, 128) using ReLU, which processes tabular 
features into a latent z; the Momentum Encoder, 

identical in architecture but updated slowly via 

momentum (coefficient 0.99), providing a stable 
reference similar to DQN's target network; and the 

Classifier Head, a linear softmax layer predicting 

among three classes from z. During training, data 

flows through the online encoder and classifier for 
prediction and optimization, while the momentum 

encoder provides a lagging target embedding10. 

Federated Training Procedure 
We employed a split-federated learning approach, 

where the model served as the local network on each 

client, orchestrated in federated rounds with a central 
server performing weight aggregation (FedAvg). 

Initially, the server globally initialized the online 

encoder, momentum encoder, and classifier weights. 

In each round, the server broadcasted weights to 
clients, who trained the model on local data for E 

epochs, updating the online and momentum encoders 

via a combined loss function involving cross-entropy 
and MSE, with α = 0.1. Clients then uploaded their 

updated weights to the server, which performed 

Federated Averaging by averaging weights across 

clients to update the global model for the next round11. 
For an initial baseline run, we set the online encoder 

hidden dimension to 64, the learning rate to 1 × 10^-3, 

the local epochs to E = 5, and the number of federated 
rounds to 3. These choices were somewhat arbitrary, 

providing a starting point for model performance. 

Accuracy on the test set after this baseline training was 
recorded. 

Hyperparameter Search 

Due to uncertainty in tuning an RL-inspired model on 

such data, we performed a grid search over key 
hyperparameters to find any combination that improves 

performance. We varied the following parameters: hidden 

layer size (32, 64, 128), learning rate (1e-3, 5e-4, 1e-4), 

and local epochs per client (E: 5 or 10). This resulted in 
18 combinations, each trained for three federated rounds 

and evaluated on test accuracy using fixed data splits for 

comparability. The top hyperparameters were further 
tested with longer training or dynamic analysis. Accuracy 

was the primary metric, acknowledging class imbalance 

and small sample size, with a note that metrics like ROC-
AUC or F1 could be used later. Training loss was 

monitored to confirm learning. Using the best 

hyperparameters, we trained a longer model for 10 rounds 

to observe the test accuracy curve, assessing if additional 
rounds improve, saturate, or overfit. 

RESULTS 

Baseline Performance 
The baseline federated MonAco-DQN model (64 hidden 

units, lr 0.001, 5 epochs/client, three rounds) achieved 

36% accuracy on a 10-sample test set, only marginally 

better than chance (~33%) and worse than always 
predicting the majority class (~40%). The model 

struggled to learn useful patterns, with accuracy 

remaining flat (~35.7%) across rounds, indicating quick 
convergence or stagnation. It frequently predicted “Good” 

or “Fair,” rarely “Poor,” likely due to class scarcity. Data 

splitting and small client samples (~13 per client) 
introduced noise, making learning more difficult. 

Hyperparameter Tuning Results 

Despite the lukewarm baseline, we exhaustively searched 

the hyperparameter grid to find any better-performing 
configuration. Figure 1 shows the test accuracy for all 18 

hyperparameter trials, sorted from highest to lowest. Each 

bar corresponds to one trial (with a given hidden layer 
size, learning rate, and local epoch count). The best result 

obtained was ~37.14% accuracy, achieved by a model 

with a 128-dimensional hidden layer, learning rate 
0.0001, and 10 local epochs per round. 

 
Figure 2. Hyperparameter search accuracies for 18 trials 

(bars sorted by accuracy). Each trial had three federated 

rounds. 

and Maxillofacial Surgery. 2025;21(10)5-10 doi:10.58240/1829006X-2025.21.10-5
7



Journal Bulletin of Stomatology and Maxillofacial Surgery, Vol. 21 № 10 

 

Prabhu Manickam Natarajan,
 
V. Priya, Pradeep Kumar Yadalam

 
  et al. Forecasting Post-Periodontal Surgery 

Healing Using Federated DQN Models: When Reinforcement Learning Isn't Enough. Bulletin of Stomatology 

 

 

 
The top configuration (leftmost bar) used 128 hidden units, a learning rate of 10^-4, and 10 epochs, achieving ~37.1% 

accuracy. Most trials ranged from 25% to 36%, showing minor gains from hyperparameter adjustments. 

 

             Table 1. presents the top five hyperparameter combinations from the search for clarity 

Trial (ID) Hidden units Learning rate Local Epochs Test Accuracy 

17 128 0.0001 10 0.3714 (37.14%) 

8 64 0.0005 5 0.3571 (35.71%) 

1 32 0.0010 10 0.3571 (35.71%) 

14 128 0.0005 5 0.3429 (34.29%) 

13 128 0.0010 10 0.3429 (34.29%) 

 

Larger models with 128 hidden units generally performed better, indicating model capacity wasn't the main issue. The 

best-performing model used a small learning rate (1e-4), while higher rates often ranked lower, possibly due to 
overshooting local minima. Increasing the number of local epochs (E=10) sometimes improved accuracy, but too many 

epochs led to overfitting; E=10 didn't always outperform E=5. The top accuracy was approximately 37%, only 1–2% 

above the baseline, suggesting that hyperparameter tweaks had a limited impact. Most trials hovered around 30–35%, 
indicating the model’s capacity and training settings didn't drastically change results. The optimal setup consisted of 128 

hidden units, a learning rate of 1e-4, and 10 epochs, which were used for further analysis. 

Extended Training and Learning Curve 
One hypothesis was that running more federated rounds might improve performance once good hyperparameters were 

in place. We therefore trained the best model for 10 rounds (rather than 3) and tracked the test accuracy after each round. 

Surprisingly, additional rounds did not yield higher accuracy; in fact, the model’s performance appeared to plateau and 

even fluctuate due to the small sample size. Figure 2 plots the test accuracy vs. round number for this 10-round training 
using the best hyperparameters. 

                    
Figiure 3. Learning curve of test accuracy over 10 federated rounds for the best hyperparameter setting (128 hidden 

units, 1e-4 lr, 10 local epochs per round). . 

 

DISCUSSION 
This study attempted to model periodontal surgery 

outcomes using a novel combination of techniques – 

reinforcement learning concepts (DQN encoders), 
momentum contrast, and federated learning – on a 

very small tabular dataset. The outcomes of this 

attempt were largely negative in terms of predictive 
performance, with the best accuracy achieved being 

around 37%, which is not clinically useful for outcome 

prediction(9,10). We showed that a split-federated 

DQN encoder can be trained on a small multi-center 

dataset without crashing, using federated averaging and 
stable momentum encoder updates. This suggests such a 

framework can be deployed in dental clinics for 

collaborative learning without sharing patient data. 
However, the dataset limited the model’s learning, 

highlighting that advanced AI models need sufficient data 

to perform well. Our RL-inspired approach, borrowing 
elements like a target network, didn’t outperform a 

standard neural network. Removing the momentum 

encoder would likely have yielded similar or better 

results. The small limited episodes hindered RL’s 
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effectiveness, illustrating why RL is rarely used on 

static medical datasets. Supervised learning or rule-
based methods may be better for small-data 

prediction(fig-2,3,) (Table 1). Federated learning 

struggles with very limited data per client, leading to 

overfitting. Increasing the number of rounds didn’t 
improve results, and models may oscillate between 

overfitted states. Our study's limitations include a 

small and imbalanced dataset, as well as limited 
features, which constrained the model's performance. 

In retrospect, we lacked detailed patient data, such as 

microbiological or genetic markers, that could have 

enhanced predictions. The model might have been 
overly complex; a simpler one could perform equally 

well. We didn't compare it to baseline models, such as 

logistic regression, which might have scored around 
40% accuracy by predicting the majority class, slightly 

outperforming our 31%. This highlights that simpler 

models often perform better in small-data scenarios 
due to less overfitting. Our complex model had too 

many parameters for the given data size, resulting in 

high variance(11). Regularization wasn’t extensively 

tuned, but it could help, although probably not enough 
to significantly boost performance. 

We must be cautious in generalization; the 37% 

accuracy on 10 test samples is unreliable, and 
performance estimates might center around 33%. No 

predictive model can be reliably trained on this 

dataset, even with advanced methods. Data quality and 
quantity are more important than model complexity. 

Larger datasets have achieved ~80% accuracy with 

simpler models, suggesting that increasing data 

collection is more beneficial. Deep learning models, 
such as TabNet or few-shot approaches, show promise 

but struggle with small sample sizes. Future efforts 

should focus on expanding datasets, addressing class 
imbalance, utilizing simpler models on clients, 

incrementally increasing training rounds, and 

exploring alternative metrics. Incorporating domain 

knowledge and exploring specialized architectures 
might improve results. Despite the negative findings, 

the study highlights the importance of obtaining 

sufficient data and employing simpler methods for 
clinical applications, thereby guiding future 

improvements. 

CONCLUSION 
We explored a novel split-federated MonAco-style 

DQN encoder for predicting healing after periodontal 

surgery. While innovative—combining federated 

learning, momentum contrast, and RL-inspired dual-
encoder—it performed poorly on our small, 

imbalanced dataset of 300 cases, achieving about 37% 

accuracy. This is significantly lower than that of larger 
datasets using traditional models, indicating that our 

RL-based model was limited by data scarcity, small 

class sizes, high variance, and possibly an unsuitable 
training style for static prediction. Despite these 

results, the study offers lessons: (1) complex models 

need enough data; (2) data quality and quantity matter 

more than complexity; and (3) federated learning should 
be tested against centralized baselines with limited data. 

The MonAcoFed-DQN could be useful with larger 

datasets, as it can learn from distributed data while 

preserving privacy. 
Future work should expand the dataset by merging similar 

outcomes for binary prediction, use class balancing, and 

transfer learning from other dental datasets. Simpler 
models, such as federated logistic regression or decision 

trees, may outperform deep models. Reliable clinical 

tools for periodontal healing require better data and 

appropriate models, not just complexity. Our study 
demonstrates that RL models are impractical with small 

datasets, underscoring the need for enhanced resources 

and future research. 
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