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ABSTRACT

Background: Predicting healing outcomes after periodontal flap surgery is important for personalized patient care, but
conventional machine learning methods dominate this area. Reinforcement learning (RL) approaches are rarely applied
in periodontal clinical datasets due to data scarcity, class imbalance, and high outcome variability. This study addresses
this gap by exploring a split-federated MonAco-style Deep Q-Network (DQN) encoder model for classifying post-
surgical healing outcomes (Good, Fair, Poor) from a small multi-center dataset.
Materials and Methods: We analyzed a dataset of 300 periodontal surgical patients with five numeric features (age,
probing depth, attachment loss, gingival index, and plague index) and four categorical features (sex, smoking status,
diabetes status, and procedure type). The data were one-hot encoded and standardized, then split into 80/20 training and
testing sets. The training set was further partitioned into 3 “clients” to simulate federated learning across clinics. We
implemented a MonAcoFed-DQN encoder, consisting of an online multilayer perceptron and a momentum-based target
encoder (updated via an exponential moving average), along with a classification head. A contrastive mean-squared
error loss was added to the cross-entropy loss to stabilize the training process. Federated training used FedAvg over
three local epochs per round. A baseline model with a hidden size of 64, a learning rate of 1e-3, and three federated
rounds was evaluated. A grid search over hyperparameters (hidden units {32, 64, 128}, learning rate {1e-3, 5e-4, le-4},
local epochs {5, 10}) optimized accuracy. An extended 10-round federated training with the best hyperparameters
examined learning dynamics. Performance was compared to SOTA results from the literature on larger datasets.
Results: The split-fed DQN encoder scored 36% accuracy, just above the 33% chance level due to class imbalance.
Hyperparameter tuning improved accuracy to 37.1% with a wider encoder, lower learning rate, and 10 epochs. Most
setups ranged from 20% to 35%, with a median of ~34%, where smaller models or higher learning rates underperformed.
The learning curve peaked early at 33%, then oscillated near 30-31%, and finally ended at 31.4%. These results are
much lower than traditional ML on larger datasets, which often achieve 78-87% accuracy/AUC.
Conclusion: This pilot study employed a split-federated DQN encoder (MonAcoFed-DQN) on periodontal surgery data,
demonstrating technical feasibility with momentum contrast; however, it achieved only 30-37% accuracy due to
limitations in the dataset. It emphasizes the need for more data and balanced classes in deep reinforcement learning for
clinical use. Simpler models or tree-based methods are suitable for small medical datasets. Future efforts should enlarge
datasets, incorporate domain knowledge, and develop hybrid or tabular-specific deep models to enhance periodontal
treatment predictions.
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Periodontal flap surgery is a common procedure used
to treat advanced periodontitis and regenerate
supportive tissue. Accurately predicting the healing
outcome (often categorized as “Good”, “Fair”, or
“Poor”) after such surgery is valuable for tailoring
follow-up care and managing patient expectations(1).
Traditional statistical models and machine learning
classifiers (e.g., logistic regression, decision trees)
have been explored for prognosis in periodontics. In
general, studies on larger cohorts have reported fairly
high predictive performance. Artificial intelligence
models for periodontitis classification in the literature
often achieve accuracies exceeding 70-80%(2—4).
These successes have relied on conventional
supervised learning and substantial datasets™.
Reinforcement learning (RL) is rarely applied in
dental research, a(5,6)s it requires numerous
interactions and is well-suited for sequential decisions,
unlike clinical outcome prediction, which involves a
single-step classification using limited data. Most
periodontal datasets are small, imbalanced, and
challenging for deep learning, particularly RL
algorithms(6,7). Factors such as data scarcity, skewed
class distributions, and outcome variability hinder Al
applications like RL in dentistry. To our knowledge,
no study has utilized RL-based deep networks for
predicting periodontal surgery, making this a novel
exploration. This study addresses a significant gap in
our knowledge? by examining how reinforcement
learning (RL) can be applied more extensively in
periodontal clinical prediction, which has primarily
relied on supervised learning. It introduces a new split-
federated MonAco-style DQN encoder architecture
designed for decentralized learning on small clinical
datasets while maintaining privacy. The study is
significant because it demonstrates the feasibility,
limitations, and future-proof potential of applying
advanced RL frameworks in real-world dental
informatics, where data is often sparse, unbalanced,
and not centralized®.

Here, we propose a split-federated MonAco-style
DQN encoder model to predict periodontal flap
surgery healing outcomes. “MonAco” in this context
refers to using a momentum-updated contrastive
encoder, a concept inspired by momentum contrast
learning and DQN’s target network for stabilization.
We integrate this into a federated learning” framework,
simulating a scenario where multiple dental clinics
(clients) collaboratively train a model without sharing
patient data. Federated learning can be advantageous
for privacy, but with few samples per clinic, it further
complicates model training. We aim to assess the
feasibility and performance of this advanced RL-
inspired approach on a small tabular clinical dataset.
We specifically highlight the gap between our
method’s performance and that of state-of-the-art
models from the literature (such as gradient boosting

or TabNet) on much larger datasets. By doing so, we
illustrate the challenges and future needs for applying
reinforcement  learning in  periodontal outcome
prediction®,
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Figure 1. shows the workflow of the study

This study employed a retrospective analysis of a de-
identified dataset comprising 300 patients who underwent
periodontal flap surgery. The data was sourced from the
information systems of Saveetha Dental College and
Hospitals, with each entry representing a unique patient.
Each record was labeled with a Healing Outcome (Good,
Fair, or Poor) assigned at a follow-up visit based on
clinical criteria. There were 12 input features: five
numeric and four categorical (with the remainder being
identifiers or redundant fields). Numeric predictors
included: age (years), probing depth (mm) at the site,
clinical attachment loss (mm), gingival index, and plaque
index. Categorical predictors included patient sex
(Male/Female), smoking status (Current/Former/Non-
smoker), diabetes status (Yes/No), and surgical procedure
type (e.g., open flap debridement, regenerative procedure,
etc.). An anonymized patient ID and a binary indicator for
bleeding on probing were present in the raw data. Still,
they were excluded from modeling (patient ID as a unique
identifier, and bleeding on probing was deemed redundant
after initial inspection). The final feature set thus
comprised nine features (five numeric and four
categorical). The target variable was the healing outcome
class, with a distribution of ~40% Good, 40% Fair, and
20% Poor, reflecting a moderate class imbalance (with
fewer Poor outcomes) (fig-1).°

All categorical features were encoded using one-hot
encoding (with handle_unknown='"ignore' to encode any
rare categories safely). Continuous features were
standardized (z-scored) to have a mean of 0 and a unit
variance, ensuring that all features were on comparable
scales for network training. After preprocessing, the data
matrix had d_input X.shape[1] = (5 numeric + expanded
categorical). The exact input dimension after one-hot
encoding was 5 + (2 categories for Sex) + (3 categories
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for Smoking) + (2 categories for Diabetes) + (N
categories for Procedure types)’. In our data, the
procedure had several distinct types, resulting in a total
input dimension of 5 + 2 + 3 + 2 + p (where p is the
number of procedure categories). The final input
vector length was 15 after encoding (since “Sex” and
“Diabetes” contributed one dummy each after
dropping the reference level, “Smoking” 2 dummies,
and “Procedure” 5 dummies in this dataset)®.

We split the dataset into 80/20 for training and testing,
maintaining the proportions of Good/Fair/Poor
outcomes. This gave 40 training and 10 test samples.
We divided the training set into three equal parts, each
containing 13, 13, and 14 samples, to mimic a
federated learning scenario with three clients, each
representing a clinical patient with partial data. The
split was random but stratified, ensuring each client
saw some examples of each class, despite some class
imbalance®.

Model Architecture

We designed a neural network called MonAcoFed-
DQN, inspired by DQN reinforcement learning and
momentum contrast. It has three parts: the Online
Encoder, a two-layer MLP with tunable hidden units
(32, 64, 128) using RelLU, which processes tabular
features into a latent z; the Momentum Encoder,
identical in architecture but updated slowly via
momentum (coefficient 0.99), providing a stable
reference similar to DQN's target network; and the
Classifier Head, a linear softmax layer predicting
among three classes from z. During training, data
flows through the online encoder and classifier for
prediction and optimization, while the momentum
encoder provides a lagging target embedding™.
Federated Training Procedure

We employed a split-federated learning approach,
where the model served as the local network on each
client, orchestrated in federated rounds with a central
server performing weight aggregation (FedAvg).
Initially, the server globally initialized the online
encoder, momentum encoder, and classifier weights.
In each round, the server broadcasted weights to
clients, who trained the model on local data for E
epochs, updating the online and momentum encoders
via a combined loss function involving cross-entropy
and MSE, with o = 0.1. Clients then uploaded their
updated weights to the server, which performed
Federated Averaging by averaging weights across
clients to update the global model for the next round™.
For an initial baseline run, we set the online encoder
hidden dimension to 64, the learning rate to 1 x 10"-3,
the local epochs to E = 5, and the number of federated
rounds to 3. These choices were somewhat arbitrary,
providing a starting point for model performance.
Accuracy on the test set after this baseline training was
recorded.

Hyperparameter Search

Due to uncertainty in tuning an RL-inspired model on

such data, we performed a grid search over key
hyperparameters to find any combination that improves
performance. We varied the following parameters: hidden
layer size (32, 64, 128), learning rate (1e-3, 5e-4, le-4),
and local epochs per client (E: 5 or 10). This resulted in
18 combinations, each trained for three federated rounds
and evaluated on test accuracy using fixed data splits for
comparability. The top hyperparameters were further
tested with longer training or dynamic analysis. Accuracy
was the primary metric, acknowledging class imbalance
and small sample size, with a note that metrics like ROC-
AUC or F1 could be used later. Training loss was
monitored to confirm learning. Using the best
hyperparameters, we trained a longer model for 10 rounds
to observe the test accuracy curve, assessing if additional
rounds improve, saturate, or overfit.

Baseline Performance

The baseline federated MonAco-DQN model (64 hidden
units, Ir 0.001, 5 epochs/client, three rounds) achieved
36% accuracy on a 10-sample test set, only marginally
better than chance (~33%) and worse than always
predicting the majority class (~40%). The model
struggled to learn useful patterns, with accuracy
remaining flat (~35.7%) across rounds, indicating quick
convergence or stagnation. It frequently predicted “Good”
or “Fair,” rarely “Poor,” likely due to class scarcity. Data
splitting and small client samples (~13 per client)
introduced noise, making learning more difficult.
Hyperparameter Tuning Results

Despite the lukewarm baseline, we exhaustively searched
the hyperparameter grid to find any better-performing
configuration. Figure 1 shows the test accuracy for all 18
hyperparameter trials, sorted from highest to lowest. Each
bar corresponds to one trial (with a given hidden layer
size, learning rate, and local epoch count). The best result
obtained was ~37.14% accuracy, achieved by a model
with a 128-dimensional hidden layer, learning rate
0.0001, and 10 local epochs per round.

Hyperparameter Search Accuracies
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Figure 2. Hyperparameter search accuracies for 18 trials
(bars sorted by accuracy). Each trial had three federated
rounds.
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The top configuration (leftmost bar) used 128 hidden units, a learning rate of 10"-4, and 10 epochs, achieving ~37.1%
accuracy. Most trials ranged from 25% to 36%, showing minor gains from hyperparameter adjustments.

Table 1. presents the top five hyperparameter combinations from the search for clarity

Trial (ID) Hidden units Learning rate Local Epochs Test Accuracy

17 128 0.0001 10 0.3714 (37.14%)
8 64 0.0005 5 0.3571 (35.71%)
1 32 0.0010 10 0.3571 (35.71%)
14 128 0.0005 5 0.3429 (34.29%)
13 128 0.0010 10 0.3429 (34.29%)

Larger models with 128 hidden units generally performed better, indicating model capacity wasn't the main issue. The
best-performing model used a small learning rate (1e-4), while higher rates often ranked lower, possibly due to
overshooting local minima. Increasing the number of local epochs (E=10) sometimes improved accuracy, but too many
epochs led to overfitting; E=10 didn't always outperform E=5. The top accuracy was approximately 37%, only 1-2%
above the baseline, suggesting that hyperparameter tweaks had a limited impact. Most trials hovered around 30-35%,
indicating the model’s capacity and training settings didn't drastically change results. The optimal setup consisted of 128
hidden units, a learning rate of 1e-4, and 10 epochs, which were used for further analysis.

Extended Training and Learning Curve

One hypothesis was that running more federated rounds might improve performance once good hyperparameters were
in place. We therefore trained the best model for 10 rounds (rather than 3) and tracked the test accuracy after each round.
Surprisingly, additional rounds did not yield higher accuracy; in fact, the model’s performance appeared to plateau and
even fluctuate due to the small sample size. Figure 2 plots the test accuracy vs. round number for this 10-round training
using the best hyperparameters.
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Figiure 3. Learning curve of test accuracy over 10 federated rounds for the best hyperparameter setting (128 hidden
units, 1e-4 Ir, 10 local epochs per round). .

dataset without crashing, using federated averaging and

This study attempted to model periodontal surgery stable momentum encoder updates. This suggests such a
outcomes using a novel combination of techniques — framework can be deployed in dental clinics for
reinforcement learning concepts (DQN encoders), collaborative learning without sharing patient data.
momentum contrast, and federated learning — on a However, the dataset limited the model’s learning,
very small tabular dataset. The outcomes of this highlighting that advanced Al models need sufficient data
attempt were largely negative in terms of predictive to perform well. Our RL-inspired approach, borrowing
performance, with the best accuracy achieved being elements like a target network, didn’t outperform a
around 37%, which is not clinically useful for outcome standard neural network. Removing the momentum
prediction(9,10). We showed that a split-federated encoder would likely have yielded similar or better
DQN encoder can be trained on a small multi-center results. The small limited episodes hindered RL’s
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effectiveness, illustrating why RL is rarely used on
static medical datasets. Supervised learning or rule-
based methods may be better for small-data
prediction(fig-2,3,) (Table 1). Federated learning
struggles with very limited data per client, leading to
overfitting. Increasing the number of rounds didn’t
improve results, and models may oscillate between
overfitted states. Our study's limitations include a
small and imbalanced dataset, as well as limited
features, which constrained the model's performance.
In retrospect, we lacked detailed patient data, such as
microbiological or genetic markers, that could have
enhanced predictions. The model might have been
overly complex; a simpler one could perform equally
well. We didn't compare it to baseline models, such as
logistic regression, which might have scored around
40% accuracy by predicting the majority class, slightly
outperforming our 31%. This highlights that simpler
models often perform better in small-data scenarios
due to less overfitting. Our complex model had too
many parameters for the given data size, resulting in
high variance(11). Regularization wasn’t extensively
tuned, but it could help, although probably not enough
to significantly boost performance.

We must be cautious in generalization; the 37%
accuracy on 10 test samples is unreliable, and
performance estimates might center around 33%. No
predictive model can be reliably trained on this
dataset, even with advanced methods. Data quality and
guantity are more important than model complexity.
Larger datasets have achieved ~80% accuracy with
simpler models, suggesting that increasing data
collection is more beneficial. Deep learning models,
such as TabNet or few-shot approaches, show promise
but struggle with small sample sizes. Future efforts
should focus on expanding datasets, addressing class
imbalance, utilizing simpler models on clients,
incrementally increasing training rounds, and
exploring alternative metrics. Incorporating domain
knowledge and exploring specialized architectures
might improve results. Despite the negative findings,
the study highlights the importance of obtaining 1
sufficient data and employing simpler methods for
clinical applications, thereby guiding future
improvements.

We explored a novel split-federated MonAco-style
DQN encoder for predicting healing after periodontal
surgery. While innovative—combining federated
learning, momentum contrast, and RL-inspired dual-
encoder—it performed poorly on our small, 3
imbalanced dataset of 300 cases, achieving about 37%
accuracy. This is significantly lower than that of larger
datasets using traditional models, indicating that our
RL-based model was limited by data scarcity, small
class sizes, high variance, and possibly an unsuitable
training style for static prediction. Despite these
results, the study offers lessons: (1) complex models

need enough data; (2) data quality and quantity matter
more than complexity; and (3) federated learning should
be tested against centralized baselines with limited data.
The MonAcoFed-DQN could be useful with larger
datasets, as it can learn from distributed data while
preserving privacy.

Future work should expand the dataset by merging similar
outcomes for binary prediction, use class balancing, and
transfer learning from other dental datasets. Simpler
models, such as federated logistic regression or decision
trees, may outperform deep models. Reliable clinical
tools for periodontal healing require better data and
appropriate models, not just complexity. Our study
demonstrates that RL models are impractical with small
datasets, underscoring the need for enhanced resources
and future research.
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