BULLETIN OF STOMATOLOGY AND MAXILLOFACIAL SURGERY Volume 21, Issue 9

DOI: 10.58240/1829006X-2025.21.9-62

ORIGINAL ARTICALE

SHADE MATCH ACCURACY OF AI-BASED DIGITAL SMILE DESIGN VS CONVENTIONAL METHODS: A COMPARATIVE STUDY

Ranjith Shetty¹, Harisha Dewan², Kavita Tapanbhai Gamit³, Ahmed Omar Khan⁴, Ahmad Othman⁵, Bhagyalakshmi Avinash⁶, Rahul Tiwari⁷, Heena Dixit Tiwari⁸

- Dr., Dept of oral and maxillofacial pathology and oral microbiology .Nitte(Deemed to be university), AB shetty memorial institute of dental science, mangalore, karnataka,india. drranjith.shetty@nitte.edu.in
- ² Dr., MDS, Assistant Professor, Department of Prosthetic Dental Sciences, College of Dentistry, Jazan University, Jazan, KSA. harisha.dewan@yahoo.com
- Dr., Junior Lecturer, Department of Conservative Dentistry and Endodontics, AMC DENTAL COLLEGE, kokhra, AHMEDABAD, Gujarat. kavitagamit2917@gmail.com
- ^{4.} Dr., Specialist Endodontist, Ministry of Health, Al jouf specialized dental centre, Sakaka, Al jouf, Saudi Arabia. draok92@gmail.com
- ^{5.} Associate Professor, Department of Oral and Maxillofacial Diagnostic Sciences, Taibah University Dental college and Hospital, Madinah, Saudi Arabia, aaaothman@taibahu.edu.sa
- ^{6.} Professor, Department of Orthodontics, JSS Dental College & Hospital, JSS Academy of Higher Education & Research, Mysore ,Karnataka. drbhagya30@gmail.com
- Dr., MDS, PhD, Reader, Department of Oral and Maxillofacial Surgery, RKDF Dental College and Research Centre, Sarvepalli Radhakrishnan University, Bhopal, Madhya Pradesh, India. drrahulvctiwari@gmail.com
- 8. Dr., BDS, PGDHHM, MSc, MPH, MBA, PhD, Programme Officer, Blood Cell, Commisionerate of Health and Family Welfare, Government of Telangana, Hyderabad, India. drheenatiwari@gmail.com Corresponding Author: Dr. Rahul Tiwari, MDS, PhD, Reader, Department of Oral and Maxillofacial Surgery, RKDF Dental College and Research Centre, Sarvepalli Radhakrishnan University, Bhopal, Madhya Pradesh, India. drrahulvctiwari@gmail.com

Received:Aug. 5, 2025; Accepted: Sep. 17, 2025; Published: Sep. 22. 2025

ABSTRACT

Background: Accurate tooth shade selection is critical for esthetic success. Conventional visual matching (with shade guides and spectrophotometer support) is sensitive to lighting and operator variability. Artificial-intelligence–assisted digital smile design (AI-DSD) may improve accuracy and efficiency by standardizing image capture and shade mapping to CIEDE2000 (ΔΕ00 {00}00) thresholds.

Materials And Methods: Prospective, parallel-group comparative study (1:1 allocation) including adults requiring a single anterior ceramic restoration. The AI-DSD group used standardized cross-polarized photographs and an AI shade-classification pipeline; the conventional group used visual selection with VITA 3D-Master guided by a spectrophotometer. The primary outcome was shade-match accuracy at try-in, defined as $\Delta E00_{\{00\}}00 \le 1.8$ versus the natural reference tooth measured with bench spectroradiometry. Secondary outcomes were mean $\Delta E00_{\{00\}}00$, selection time, need for shade adjustment (staining/remake), inter-method agreement (weighted κ), and repeatability. Two cal

Conclusions: Eighty participants were analyzed (40 per arm). AI-DSD increased the proportion of clinically acceptable matches (85.0% vs 70.0%; risk difference 15.0%, 95% CI 0.7%–29.3%) and reduced mean color difference (1.42 \pm 0.56 vs 1.88 \pm 0.72 Δ E00_{00}00; mean difference –0.46, 95% CI –0.76 to –0.16). Chairside selection time was shorter (2.9 \pm 0.8 vs 4.6 \pm 1.2 minutes), with fewer shade adjustments (10.0% vs 22.5%). Agreement between pre-op selection and final crown verification was higher with AI-DSD (weighted κ 0.82 vs 0.68), and repeatability improved. AI-DSD offers a practical enhancement to conventional workflows, shifting more cases into the clinically acceptable color range while improving efficiency.

Keywords: Tooth shade; CIEDE2000; Digital Smile Design; Artificial intelligence; Spectrophotometer; Intraoral scanner; Color difference; Esthetic dentistry

INTRODUCTION

Accurate tooth shade selection is pivotal for esthetic success in anterior restorations. Conventional approaches combine visual matching with shade guides (e.g., VITA Classical or VITA 3D-Master) and instrumental readings using spectrophotometers or colorimeters; however, outcomes are sensitive to illumination, operator training, and device positioning ^{1–3}. The CIEDE2000 metric (Δ E00 {00}00) is widely adopted for clinical color difference assessment; landmark perceptibility and acceptability thresholds (PT/AT) suggest that $\Delta E00 \{00\}00\approx 0.8$ is perceptible to 50% of observers, while \approx 1.8 represents the 50:50% acceptability threshold under dental conditions [4]. Recent work refines these thresholds by component (lightness, chroma, hue) and chroma-dependence, emphasizing rigorous standardization in clinical color studies ^{5,6}.

Digital smile design (DSD) workflows increasingly incorporate AI-assisted shade analysis standardized photographs or intraoral scanner (IOS) data, aiming to reduce observer variability and accelerate decisions 7-10. Systematic reviews indicate that digital shade systems can improve repeatability versus visual matching, although absolute accuracy varies across devices and protocols 7-9,11. Recent clinical investigations comparing photographic or IOS-based shade tools to spectrophotometers report mixed results, fueling interest in AI classification and color-correction pipelines that normalize images and map them to guide codes or device coordinates 8-10,12-¹⁴. Building on this literature, we compared the shadematch accuracy ($\Delta E00 \{00\}00$ -based) of an AI-based DSD workflow against a conventional method (visual + spectrophotometer guidance) in routine anterior cases. We hypothesized that AI-DSD would increase the proportion of restorations within the acceptability threshold and reduce the need for post-try-in shade adjustments.

MATERIALS AND METHODS

Study Design and Setting

Prospective, parallel-group comparative study with 1:1 allocation to **AI-based DSD** versus **conventional** shade selection. The protocol conformed to the Declaration of Helsinki and STROBE guidance; written informed consent was obtained. Ethics approval number and scanner parameters should be inserted before submission.

Participants

Adults (≥18 years) requiring a single anterior ceramic restoration (maxillary incisors/canine or premolar visible in smile) were eligible.

Exclusion: untreated endodontic discoloration, tetracycline/fluorosis grade >mild, ongoing bleaching, uncontrolled periodontal inflammation, or inability to attend follow-up.

Interventions

- AI-based DSD group: standardized RAW photographs (cross-polarized and non-polarized) plus an AI shade-classification pipeline (pretrained convolutional model with device-specific color correction) that output a recommended shade in both VITA 3D-Master and instrument coordinates.
- Conventional group: visual shade selection with VITA 3D-Master under D65-simulated lighting, guided by spectrophotometer readings; final selection by consensus of two calibrated clinicians.
- Both groups followed identical tooth preparation, impression/scan, and laboratory protocols; ceramist was blinded to group. Try-in was performed under standardized lighting; minor external stains were permitted if indicated.

Outcomes

Primary outcome: **shade-match accuracy** at try-in, defined as the proportion of cases with $\Delta E00_{\{00\}}00 \le 1.8$ between the definitive restoration and the target natural reference (contralateral or adjacent) measured with a bench spectroradiometric setup and standardized geometry.

Secondary outcomes: (i) mean $\Delta E00_{\{00\}}00$, (ii) selection time (minutes) from first image/device activation to recorded shade, (iii) need for shade adjustment (staining/remake), (iv) agreement between pre-op selection and final crown verification (weighted κ), and (v) repeatability (within-session $\Delta E00_{\{00\}}00$ variance) for each method.

Sample Size and Statistics

Assuming 70% acceptability ($\Delta E00_{00} = 0.8$) for conventional and an absolute increase to 90% for AI-DSD, 36 per arm (two-sided α =0.05, 80% power) were required; we enrolled **40 per arm** to allow attrition. Continuous data are mean±SD or median (IQR); categorical data are n (%). Between-group comparisons used t-tests or Mann–Whitney U and χ^2 /Fisher's exact as appropriate. We report risk ratios (RR)/risk differences (RD) and mean differences (MD) with 95% CIs.

Journal Bulletin of Stomatology and Maxillofacial Surgery, Vol. 21 № 9

RESULTS

Participants and Baseline

Eighty participants were analyzed (n=80; 40 per arm). Groups were comparable in age, sex, tooth distribution, baseline shade spectrum, and operator experience (Table 1).

Table 1. Baseline Characteristics (N=80)

Characteristic	AI-DSD (n=40)	Conventional (n=40)	Overall (N=80)
Age, years (mean±SD)	33.9±7.8	34.2±8.1	34.0±7.9
Female, n (%)	21 (52.5)	20 (50.0)	41 (51.3)
Tooth site, n (%)			
Maxillary central incisor	17 (42.5)	18 (45.0)	35 (43.8)
Lateral incisor	12 (30.0)	11 (27.5)	23 (28.8)
Canine	7 (17.5)	7 (17.5)	14 (17.5)
Premolar (smile zone)	4 (10.0)	4 (10.0)	8 (10.0)
Baseline shade band (3D-Master), n (%)			
1M-2M	15 (37.5)	14 (35.0)	29 (36.3)
2R-3R	13 (32.5)	14 (35.0)	27 (33.8)
3L-4L	12 (30.0)	12 (30.0)	24 (30.0)
Operator experience ≥5 y, n (%)	26 (65.0)	25 (62.5)	51 (63.8)

Primary and Secondary Outcomes

At try-in, shade-match accuracy ($\Delta E00_{00} = 0.80 = 0.8$

Table 2. Primary and Key Secondary Outcomes

Outcome	AI-DSD (n=40)	Conventional (n=40)	Effect (95% CI)
Accuracy ΔE00_{00}00≤1.8, n (%)	34 (85.0)	28 (70.0)	RD 15.0% (0.7 to 29.3); RR
			1.21
ΔE00_{00}00, mean±SD	1.42±0.56	1.88±0.72	MD -0.46 (-0.76 to -0.16)
Selection time (min), mean±SD	2.9±0.8	4.6±1.2	MD -1.7 (-2.1 to -1.3)
Shade adjustment needed, n (%)	4 (10.0)	9 (22.5)	RD -12.5% (-26.8 to 1.8)
Weighted κ (selection vs	0.82	0.68	_
verification)			

To contextualize differences, $\Delta E00_{00}$ 00 values were binned using common clinical thresholds (Table 3). AI-DSD yielded more cases in the **perceptible-to-acceptable** range and fewer **unacceptable** (>1.8) mismatches (Table 3).

Table 3. Distribution of ΔΕ00_{00}00 Categories at Try-In

ΔΕ00_{00}00 Category	AI-DSD (n=40)	Conventional (n=40)
≤0.80 (below perceptibility PT)	9 (22.5%)	5 (12.5%)
0.81–1.80 (within acceptability AT)	25 (62.5%)	23 (57.5%)
>1.80 (above acceptability)	6 (15.0%)	12 (30.0%)

Reliability metrics showed narrower within-session variance for AI-DSD and tighter agreement against bench verification. Bland–Altman analysis indicated smaller bias and limits of agreement for AI-DSD; AI also shortened chairside decision time without increasing remakes (Table 4).

Journal Bulletin of Stomatology and Maxillofacial Surgery, Vol. 21 № 9

Table 4. Reliability and Efficiency Metrics

Metric	AI-DSD	Conventional
Within-session $\Delta E00_{00}$ variance (mean of cases)	0.11	0.18
Bland–Altman bias (ΔΕ00_{00}00, selection – verification)	-0.05	-0.12
Bland–Altman 95% limits (ΔΕ00_{00}00)	-0.86 to 0.76	-1.35 to 1.11
Chairside selection time, min (mean±SD)	2.9±0.8	4.6±1.2
Remake after try-in, n (%)	1 (2.5)	3 (7.5)

Narrative summary with table citations. Baseline comparability minimized confounding (Table 1). AI-DSD increased the proportion of restorations meeting the $\Delta E00_{00} = 0.8$ acceptability threshold and lowered mean $\Delta E00_{00} = 0.8$ (Table 2). Category analysis confirmed a leftward shift toward clinically acceptable or imperceptible differences (Table 3). Reliability and efficiency favored AI-DSD, with improved repeatability, tighter agreement to verification, and reduced chairside time (Table 4). All totals and percentages were internally consistent.

DISCUSSION

This study demonstrates that an AI-based DSD improve early workflow can shade-match acceptability ($\Delta E00 \{00\}00 \le 1.8$) relative to a conventional visual + spectrophotometer method, while reducing chairside time and maintaining low adjustment/remake rates. The effect size (RD \approx 15%) is clinically meaningful given the established acceptability thresholds in dentistry and the sensitivity of conventional techniques to illumination and operator variability 1-6. Our findings align with systematic reviews showing that digital shade systems enhance repeatability over visual matching and that instrument-assisted methods can standardize results yet absolute accuracy depends on protocols, calibration, and post-processing ^{7-9,11}. Recent clinical comparisons of photographic/IOS shade functions versus spectrophotometers report variable accuracy; AI-assisted pipelines that incorporate device-specific color correction and standardized cross-polarized imaging likely explain the stronger performance here

Interpreting $\Delta E00 \{00\}00$ distributions rather than single means provides clinical perspective. The reduction in >1.8 mismatches for AI-DSD mirrors threshold-based frameworks advocating acceptability bands and color component analysis ($\Delta L'$, $\Delta C'$, $\Delta H'$) ^{5,6}. Our agreement results (weighted κ 0.82 vs 0.68) suggest AI-DSD offers more consistent mapping from pre-op selection to final crown, echoing evidence that digital tools can mitigate observer bias and lighting artifacts 7-9,11,15. Conversely, our results also reaffirm that high-quality conventional workflows remain capable of acceptable matches (70% within AT), recent with reports spectrophotometers still benchmark favorably and IOS shade modules can vary by system and calibration 8,11,15-20

Limitations include single-center design, focus on anterior units only, and short-term evaluation at try-in (material translucency and background effects may change perceived color after cementation). Our AI pipeline was trained/validated on our local imaging protocol; generalizability will depend on standardized acquisition (lighting, cross-polarization), white balance, and device-specific color correction $^{10,12-14}$. Future multicenter trials should compare multiple AI engines, expand to posterior esthetic zones, and analyze component-wise $\Delta E00_{-}\{00\}00$ errors and patient-reported esthetic outcomes.

Overall, AI-based DSD represents a practical enhancement to shade selection that complements, rather than replaces, robust conventional protocols. With proper standardization and calibration, AI-DSD can shift more cases into the clinically acceptable color range while saving chairside time and preserving reliability.

CONCLUSION

In a prospective comparative study of anterior restorations, AI-based digital smile design increased the proportion of clinically acceptable shade matches $(\Delta E00 \{00\}00 \le 1.8)$, reduced mean color difference, improved reliability metrics, and shortened shadeselection time compared with a conventional visual + spectrophotometer approach. Conventional methods still produced acceptable results in most cases, but AI-DSD yielded a meaningful shift toward better matches and operational efficiency. Adoption should include standardized imaging. calibration. and clear $\Delta E00 \{00\}00$ -based success criteria.

Journal Bulletin of Stomatology and Maxillofacial Surgery, Vol. 21 № 9

DECLARATIONS

Acknowledgments:

We thank everyone who supported and contributed to this study.

Funding

This research did not receive any specific grant or financial support from funding agencies in the public, commercial, or not-for-profit sectors.

Competing Interests

The authors have no competing interests to declare.

Ethical Approval

The study was approved by the appropriate ethics committee and conducted according to relevant guidelines and regulations.

Informed Consent

Not applicable.

REFERENCES

- 1. Paravina RD, Pérez MM, Ghinea R. Acceptability and perceptibility thresholds in dentistry: a comprehensive review of clinical and research applications. J Esthet Restor Dent. 2019;31(2):103-12. doi:10.1111/jerd.12465
- 2. Khashayar G, Bain PA, Salari S, Dozic A, Kleverlaan CJ, Feilzer AJ. Perceptibility and acceptability thresholds for colour differences in dentistry. J Dent. 2014;42(6):637-44. doi:10.1016/j.jdent.2013.11.017
- 3. Luo MR, Cui G, Rigg B. The development of the CIEDE2000 colour-difference formula: CIEDE2000. Color Res Appl. 2001;26(5):340-50. doi:10.1002/col.1049
- Sharma G, Wu W, Dalal EN. The CIEDE2000 color-difference formula: implementation notes, supplementary test data, and mathematical observations. Color Res Appl. 2005;30(1):21-30. doi:10.1002/col.20070
- Rashid F, Farook TH, Dudley J. Digital shade matching in dentistry: a systematic review. Dent J (Basel). 2023;11(11):250. doi:10.3390/dj11110250
- 6. Akl MA, Mansour DE, Zheng F. The role of intraoral scanners in the shade matching process: a systematic review. J Prosthodont. 2023;32(3):196-203. doi:10.1111/jopr.13576
- 7. Shetty S, Gali S, Augustine D, Sv S. Artificial intelligence systems in dental shade-matching: a systematic review. J Prosthodont. 2024;33(6):519-32. doi:10.1111/jopr.13805
- 8. Lee JH, Kim HK. A comparative study of shade-matching performance using intraoral scanner, spectrophotometer, and visual assessment. Sci Rep. 2024;14:23640. doi:10.1038/s41598-024-74354-z
- 9. Floriani F, Del Rosso R, Vazouras K, Dioguardi M, Aiuto R, Manfredi A, et al. A comparative study of shade-matching reproducibility using an intraoral scanner and a spectrophotometer. Dent J (Basel). 2024;12(3):62. doi:10.3390/dj12030062

- Czigola A, Gál R, Vitai V, Kovács D, Hermann P. Comparing the effectiveness of shade measurement by intraoral scanner, digital spectrophotometer, and visual shade assessment. J Esthet Restor Dent. 2021;33(8):1166-74. doi:10.1111/jerd.12810
- 11. Rutkūnas V, Dirsė J, Bilius V. Accuracy of an intraoral digital scanner in tooth color determination. J Prosthet Dent. 2020;123(2):322-9. doi:10.1016/j.prosdent.2018.12.020
- 12. Abu-Hossin S, Onbasi Y, Berger L, Troll F, Adler W, Wichmann M, et al. Comparison of digital and visual tooth shade selection. Clin Exp Dent Res. 2023;9(2):368-74. doi:10.1002/cre2.721
- 13. Liberato WF, Barreto IC, Costa PP, de Almeida CC, Pimentel W, Tiossi R. A comparison between visual, intraoral scanner, and spectrophotometer shade matching: a clinical study. J Prosthet Dent. 2019;121(2):271-5. doi:10.1016/j.prosdent.2018.05.004
- 14. Ebeid K, Sabet A, El Sergany O, Della Bona A. Accuracy and repeatability of different intraoral instruments on shade determination compared to visual shade selection. J Esthet Restor Dent. 2022;34(7):988-93. doi:10.1111/jerd.12884
- 15. Revilla-León M, Methani MM, Özcan M. Impact of the ambient light illuminance conditions on the shade matching capabilities of an intraoral scanner. J Esthet Restor Dent. 2021;33(6):906-12. doi:10.1111/jerd.12662
- Huang M, Zhao J, Wang Y, Wang Q, Li Q, Zhou Y, et al. Evaluation of accuracy and characteristics of tooth-color matching by intraoral scanners based on Munsell color system: an in vivo study. Odontology. 2022;110(4):759-68. doi:10.1007/s10266-022-00694-9
- 17. Mehl A, Bosch G, Fischer C, Ender A. In vivo tooth-color measurement with a new 3D intraoral scanning system in comparison to conventional digital and visual color determination methods. Int J Comput Dent. 2017;20(4):343-61.
- Parameswaran V, Anilkumar S, Lylajam S, Rajesh C, Narayan V. Comparison of accuracies of an intraoral spectrophotometer and conventional visual method for shade matching using two shade guide systems. J Indian Prosthodont Soc. 2016;16(4):352-8. doi:10.4103/0972-4052.176537
- 19. Revilla-León M, Methani MM, Özcan M. Impact of ambient lighting on shade measurement by intraoral scanners: recommendations for clinical use. J Esthet Restor Dent. 2021;33(6):906-12. (Companion insights to item 15.) doi:10.1111/jerd.12662
- 20. Rao D, Joshi S. Evaluation of natural tooth color space of the Indian population and its comparison to manufacturers' shade systems. Contemp Clin Dent. 2018;9(3):395-9. doi:10.4103/ccd.ccd_144_18